Deck 15: Functions and Precalculus

Full screen (f)
exit full mode
Question
Which of the following points lie on the graph of f(x)=3x+4f ( x ) = \sqrt { 3 x + 4 } ?A (-3, 6) B (4, 4) C (0, 4)

A) A and B
B) B and C
C) Only B
D) Only C
Use Space or
up arrow
down arrow
to flip the card.
Question
Describe the function f(t)=5t+1f ( t ) = - 5 t + 1 as a set of ordered pairs.
Question
Construct a rule f:{1,2,3,4,5}{3,6,9,12}f : \{ 1,2,3,4,5 \} \rightarrow \{ 3,6,9,12 \} that is (a) a function,(b) a one-to-one function.
Question
Find the domain of f(x)=x24x29f ( x ) = \frac { \sqrt { x ^ { 2 } - 4 } } { x ^ { 2 } - 9 }
Question
Find the average rate of change of the function f(x)=x+1f ( x ) = \sqrt { x + 1 } on the interval [0, 8].

A) 8/3
B) 3/8
C) 1/4
D) -1/4
Question
Find the domain and range of f(x)=2x+1f ( x ) = \sqrt { 2 - x } + 1
Question
Find the domain and range of f(x)=1x3f ( x ) = \frac { 1 } { \sqrt { x - 3 } }

A) Domain: (,3]( - \infty , 3 ] Range: [0,)[ 0 , \infty )
B) Domain: [0,)[ 0 , \infty ) Range: (,3]( - \infty , 3 ]
C) Domain: (,3)( - \infty , 3 ) Range: (0,)( 0 , \infty )
D) Domain: (3,)( 3 , \infty ) Range: (0,)( 0 , \infty )
Question
Find the domain and range of f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 }

A) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,)( - \infty , \infty ) Range: (0,)( 0 , \infty )
D) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: [0,)[ 0 , \infty )
Question
Find the domain and range of f(x)=x2x2f ( x ) = \frac { | x - 2 | } { x - 2 }

A) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
D) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: {1,1}\{ - 1,1 \}
Question
Find the domain and range of f(x)=9x2x+3f ( x ) = \frac { \sqrt { 9 - x ^ { 2 } } } { x + 3 }

A) Domain: [-3, 3] Range: [0,)[ 0 , \infty )
B) Domain: (-3, 3) Range: [0,)[ 0 , \infty )
C) Domain: (-3, 3] Range: [0,)[ 0 , \infty )
D) Domain: (-3, 3] Range: (0,)( 0 , \infty )
Question
Find the domain and range of f(x)=x25x+4f ( x ) = \sqrt { x ^ { 2 } - 5 x + 4 }

A) Domain: (,4)(1,)( - \infty , - 4 ) \cup ( - 1 , \infty ) Range: (0,)( 0 , \infty )
B) Domain: (,1)(4,)( - \infty , 1 ) \cup ( 4 , \infty ) Range: [0,)[ 0 , \infty )
C) Domain: (,1][4,)( - \infty , 1 ] \cup [ 4 , \infty ) Range: [0,)[ 0 , \infty )
D) Domain: (,1][4,)( - \infty , 1 ] \cup [ 4 , \infty ) Range: (0,)( 0 , \infty )
Question
If f(x)=x3+2f ( x ) = x ^ { 3 } + 2 , find f(a2)f \left( a ^ { 2 } \right)

A) a5+2a ^ { 5 } + 2
B) (a2+2)3\left( a ^ { 2 } + 2 \right) ^ { 3 }
C) a3+8a ^ { 3 } + 8
D) a6+2a ^ { 6 } + 2
Question
Given y=1xy = 1 - \sqrt { x } , for what value(s) of XX is y=2y = - 2 ?

A) 4
B) 9
C) 16
D) None of these
Question
Find the domain of f(x)=x29x+3f ( x ) = \frac { x ^ { 2 } - 9 } { \sqrt { x + 3 } }

A) Domain: [3,)[ - 3 , \infty )
B) Domain: (3,)( - 3 , \infty )
C) Domain: (,)( - \infty , \infty )
D) Domain: (,3)(3,)( - \infty , - 3 ) \cup ( - 3 , \infty )
Question
Given y=x24x8y = x ^ { 2 } - 4 x - 8 , for what value(s) of XX is y=3y = - 3 ?

A) -5 and 1
B) 5 and 1
C) 4 and 2
D) -1 and 5
Question
If f(x)=2x1f ( x ) = \sqrt { 2 x - 1 } , find f(1+h)f(1)h\frac { f ( 1 + h ) - f ( 1 ) } { h }
Question
If g(x)=x2+1xg ( x ) = \frac { x ^ { 2 } + 1 } { x } , find g(x+h)g(x)g ( x + h ) - g ( x )
Question
Which of the following is an odd function?

A) f(x)=x3x2f ( x ) = x ^ { 3 } - x ^ { 2 }
B) g(x)=5xg ( x ) = \frac { 5 } { x }
C) h(x)=x4x2h ( x ) = x ^ { 4 } - x ^ { 2 }
D) k(x)=x2k ( x ) = | x - 2 |
Question
Is f(x)=2x3x2+2f ( x ) = \frac { 2 x ^ { 3 } } { x ^ { 2 } + 2 } an even function, an odd function or neither? Explain.
Question
Is g(x)=3x2+1g ( x ) = \frac { - 3 } { x ^ { 2 } + 1 } an even function, an odd function or neither? Explain.
Question
Is g(x)=x5xx2+1g ( x ) = \frac { x ^ { 5 } - x } { x ^ { 2 } + 1 } an even function, an odd function or neither? Explain.
Question
If ff is an odd function and gg is an even function, determine whether the following functions are odd, even or neither.
a. (f(x))2+(g(x))3( f ( x ) ) ^ { 2 } + ( g ( x ) ) ^ { 3 }
b. 5+g(x)5 + g ( x )
c. f(x3)f \left( x ^ { 3 } \right)
d. f(g(x))f ( g ( x ) )
Question
(-3, 4) is on the graph of an odd function f(x)f ( x ) find another point on the graph of f(x)f ( x )

A) (-3, 3)
B) (-3, 4)
C) (3, 4)
D) (3, -4)
Question
(2, 3) is on the graph of an even function g(x)g ( x ) find another point on the graph of g(x)g ( x )

A) (2, -3)
B) (-2, -3)
C) (-2, 3)
D) (-3, 2)
Question
Complete the entries in the table below to make ff an even function
x3210123f(x)523\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & - 3 & - 2 & - 1 & 0 & 1 & 2 & 3 \\\hline f ( x ) & 5 & & - 2 & & & 3 & \\\hline\end{array}
Question
Complete the entries in the table below to make ff an odd function
x3210123f(x)523\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & - 3 & - 2 & - 1 & 0 & 1 & 2 & 3 \\\hline f ( x ) & 5 & & - 2 & & & 3 & \\\hline\end{array}
Question
Find the inverse of f(x)=1+4x3f ( x ) = \frac { 1 + 4 x } { 3 }

A) f1(x)=3x+14f ^ { - 1 } ( x ) = \frac { 3 x + 1 } { 4 }
B) f1(x)=4x13f ^ { - 1 } ( x ) = \frac { 4 x - 1 } { 3 }
C) f1(x)=4x+13f ^ { - 1 } ( x ) = \frac { 4 x + 1 } { 3 }
D) f1(x)=3x14f ^ { - 1 } ( x ) = \frac { 3 x - 1 } { 4 }
Question
Find the inverse of f(x)=x+2x2f ( x ) = \frac { x + 2 } { x - 2 }

A) f1(x)=x2x+2f ^ { - 1 } ( x ) = \frac { x - 2 } { x + 2 }
B) f1(x)=2x1x+2f ^ { - 1 } ( x ) = \frac { 2 x - 1 } { x + 2 }
C) f1(x)=2x2x1f ^ { - 1 } ( x ) = \frac { 2 x - 2 } { x - 1 }
D) f1(x)=2x+2x1f ^ { - 1 } ( x ) = \frac { 2 x + 2 } { x - 1 }
Question
Find the inverse of f(x)=25xf ( x ) = - \sqrt { 2 - 5 x }
Question
Let f(x)=2x3+3x+1f ( x ) = 2 x ^ { 3 } + 3 x + 1 Find XX if f1(x)=1f ^ { - 1 } ( x ) = - 1

A) 3/2
B) -4
C) 0
D) 4
Question
Let f(x)=x21+x3f ( x ) = \frac { x ^ { 2 } } { 1 + x ^ { 3 } } Find XX if f1(x)=2f ^ { - 1 } ( x ) = 2

A) 1/21 / 2
B) 9/4
C) 4/9
D) 2/5
Question
Given that f(x)=x2+2f ( x ) = x ^ { 2 } + 2 , and g(x)=xg ( x ) = \sqrt { x } , find (fg)(x)( f \circ g ) ( x ) and (gf)(x)( g \circ f ) ( x ) , and their domains.
Question
Given that f(x)=1x+1f ( x ) = \frac { 1 } { x } + 1 and g(x)=11+xg ( x ) = \frac { 1 } { 1 + x } , find (fg)(2)( f \circ g ) ( 2 ) , and their domains.
Question
Table below defines two functions ff and gg Create an additional row for the table for the function (gf)(x)( g \circ f ) ( x )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Question
Table below defines two functions ff and gg Create an additional row for the table for the function (fg)(x)( f \circ g ) ( x )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Question
Table below defines two functions ff and gg Create an additional row for the table for the function g(x+1)g ( x + 1 )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Question
Express f(x)=(2+cos(x3))2f ( x ) = \left( 2 + \cos \left( x ^ { 3 } \right) \right) ^ { 2 } as a composition of two functions: gg and hh such that f=ghf = g \circ h
Question
Express f(x)=1+x3f ( x ) = \sqrt [ 3 ] { 1 + \sqrt { x } } as a composition of three functions: gg and hh such that f=ghf = g \circ h
Question
Given f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and g(x)=3x+2g ( x ) = 3 x + 2 , find all values of XX such that f(g(x))=g(f(x))f ( g ( x ) ) = g ( f ( x ) )

A) 2, 3
B) 0, 2
C) 0, - 2
D) 0, 3
Question
Given f(x)=2x+1f ( x ) = 2 x + 1 and h(x)=2x2+4x+1h ( x ) = 2 x ^ { 2 } + 4 x + 1 , find a function gg such that f(g(x))=h(x)f ( g ( x ) ) = h ( x )

A) g(x)=(x2+1)2g ( x ) = \left( x ^ { 2 } + 1 \right) ^ { 2 }
B) g(x)=x2+2g ( x ) = x ^ { 2 } + 2
C) g(x)=x2+4xg ( x ) = x ^ { 2 } + 4 x
D) g(x)=x2+2xg ( x ) = x ^ { 2 } + 2 x
Question
Given that f(x)=x21f ( x ) = x ^ { 2 } - 1 , g(x)=1x+3g ( x ) = \frac { 1 } { x + 3 } , and h(x)=xh ( x ) = \sqrt { x } , find an equation for the following functions, evaluate them at x = 1 and find their domains.
(a) (4fh)(x)( 4 f h ) ( x )
(b) (fg)(x)\left( \frac { f } { g } \right) ( x )
Question
Given that f(x)=x21f ( x ) = x ^ { 2 } - 1 , g(x)=1x+3g ( x ) = \frac { 1 } { x + 3 } , and h(x)=xh ( x ) = \sqrt { x } , find an equation for f(x2)+3h(x)+(2fg)(x)f ( x - 2 ) + 3 h ( x ) + ( 2 f g ) ( x ) , evaluate it at x = 1 and find its domain.
Question
Write all the transformations applied to obtain the graph of y=x2+4xy = - x ^ { 2 } + 4 x from the graph of y=x2y = x ^ { 2 }
Question
Write all the transformations applied to obtain the graph of y=2x+43y = | 2 x + 4 | - 3 from the graph of y=xy = | x |
Question
Write all the transformations applied to obtain the graph of y=2x+1y = 2 - \sqrt { x + 1 } from the graph of y=xy = \sqrt { x }
Question
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of f(x)3f ( x ) - 3

A) (0, 7)
B) (3, 4)
C) (3, 7)
D) (0, 4)
Question
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of f(x2)f ( x - 2 )

A) (-2, 7)
B) (3, 5)
C) (1, 7)
D) (1,5)
Question
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of 2f(x+1)32 f ( x + 1 ) - 3

A) (4, 7)
B) (4, 14)
C) (4, 11)
D) (8, 11)
Question
Given g(x)={3x<1x+1x1g ( x ) = \left\{ \begin{array} { c c } 3 & x < 1 \\\sqrt { x + 1 } & x \geq 1\end{array} \right. Find g(t21)g \left( t ^ { 2 } - 1 \right)
Question
Find the domain and range of the piecewise defined function: f(x)={1x51x5<x<5x5x>5f ( x ) = \left\{ \begin{array} { c c } - 1 & x \leq - 5 \\\frac { 1 } { x } & - 5 < x < 5 \\x - 5 & x > 5\end{array} \right.

A) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,5)(5,)( - \infty , 5 ) \cup ( 5 , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,0)(0,5)(5,)( - \infty , 0 ) \cup ( 0,5 ) \cup ( 5 , \infty ) Range: [0,)[ 0 , \infty )
D) Domain: (,0)(0,5)(5,)( - \infty , 0 ) \cup ( 0,5 ) \cup ( 5 , \infty ) Range: {1}[0,)\{ - 1 \} \cup [ 0 , \infty )
Question
f(x)={x2+3x<03xx0f ( x ) = \left\{ \begin{array} { r r } x ^ { 2 } + 3 & x < 0 \\3 - x & x \geq 0\end{array} \right. Calculate f(1),f(0)f ( - 1 ) , f ( 0 ) and f(2)f ( 2 )
Question
A. If ff is an invertible function such that f(3)=3f ( 3 ) = 3 , then f1(3)=13f ^ { - 1 } ( 3 ) = \frac { 1 } { 3 } .
B. A one-to-one function is invertible.
C. If ff and gg are inverses of each other then ff and gg have the same domain.

A)A and B are true.
B)B and C are true.
C) Only B is true.
D) None of these
Question
Write f(x)=32xf ( x ) = | 3 - 2 x | as a piecewise function.

A) f(x)={3+2xx3/232xx>3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x \leq 3 / 2 \\3 - 2 x & x > 3 / 2\end{array} \right.
B) f(x)={32xx3/23+2xx>3/2f ( x ) = \left\{ \begin{array} { c c } - 3 - 2 x & x \leq 3 / 2 \\3 + 2 x & x > 3 / 2\end{array} \right.
C) f(x)={3+2xx<3/232xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x < 3 / 2 \\3 - 2 x & x \geq 3 / 2\end{array} \right.
D) f(x)={3+2xx>3/232xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x > 3 / 2 \\3 - 2 x & x \leq 3 / 2\end{array} \right.
Question
Write f(x)=4x2f ( x ) = \left| 4 - x ^ { 2 } \right| as a piecewise function.

A) f(x)={4+x22x24x2 otherwise f ( x ) = \left\{ \begin{array} { l } 4 + x ^ { 2 } - 2 \leq x \leq 2 \\4 - x ^ { 2 } \text { otherwise }\end{array} \right.
B) f(x)={4+x22x24x2 otherwise f ( x ) = \left\{ \begin{array} { c c } - 4 + x ^ { 2 } & - 2 \leq x \leq 2 \\4 - x ^ { 2 } & \text { otherwise }\end{array} \right.
C) f(x)={4+x22x24+x2 otherwise f ( x ) = \left\{ \begin{array} { c c } 4 + x ^ { 2 } & - 2 \leq x \leq 2 \\- 4 + x ^ { 2 } & \text { otherwise }\end{array} \right.
D) f(x)={4x22x24+x2 otherwise f ( x ) = \left\{ \begin{array} { c c } 4 - x ^ { 2 } & - 2 \leq x \leq 2 \\- 4 + x ^ { 2 } & \text { otherwise }\end{array} \right.
Question
Write f(x)=5+3x2f ( x ) = 5 + | 3 x - 2 | as a piecewise function.

A) f(x)={3+3xx<2/333xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 3 x & x < 2 / 3 \\3 - 3 x & x \geq 3 / 2\end{array} \right.
B) f(x)={33xx<2/33+3xx2/3f ( x ) = \left\{ \begin{array} { c c } - 3 - 3 x & x < 2 / 3 \\3 + 3 x & x \geq 2 / 3\end{array} \right.
C) f(x)={73xx<2/33+3xx2/3f ( x ) = \left\{ \begin{array} { l l } 7 - 3 x & x < 2 / 3 \\3 + 3 x & x \geq 2 / 3\end{array} \right.
D) f(x)={7+3xx<2/333xx2/3f ( x ) = \left\{ \begin{array} { l l } 7 + 3 x & x < 2 / 3 \\3 - 3 x & x \geq 2 / 3\end{array} \right.
Question
Find the equation of a linear function whose graph has slope -2 and passes through the point (-1, 2). Write your answer in slope-intercept form.

A) y=2x5y = - 2 x - 5
B) y=2x+3y = - 2 x + 3
C) y=2x+4y = - 2 x + 4
D) y=2xy = - 2 x
Question
Find the equation of a linear function whose graph passes through the points (2, -1) and (-3, 2).

A) 5x+3y+7=05 x + 3 y + 7 = 0
B) 5x+3y+3=05 x + 3 y + 3 = 0
C) 3x+5y+3=03 x + 5 y + 3 = 0
D) 3x+5y+7=03 x + 5 y + 7 = 0
Question
Find the equation of a linear function whose graph is perpendicular to x2y+2=0x - 2 y + 2 = 0 and passes through the point (1, 3).

A) y=2x5y = - 2 x - 5
B) y=2x+1y = - 2 x + 1
C) y=2x+5y = - 2 x + 5
D) y=2x5y = 2 x - 5
Question
Given f(x)=x2+x2x1f ( x ) = \frac { x ^ { 2 } + x - 2 } { x - 1 } , find a linear function gg which is identical to ff
Question
Sketch the graph of a possible rational function ff with roots at x=1x = - 1 and x=3x = 3 , a vertical asymptote at x=2x = 2 , and a horizontal asymptote at y=2y = - 2
Question
Construct an equation of a rational function whose graph has no roots, no holes, has vertical asymptotes at x=3,x=3x = - 3 , x = 3 and a horizontal asymptote at y=2y = 2 There are many possible answers, but choose the only correct answer from those that are provided below.

A) f(x)=2x21x29f ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } - 9 }
B) f(x)=2x21x2+9f ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 9 }
C) f(x)=2x2+1x29f ( x ) = \frac { 2 x ^ { 2 } + 1 } { x ^ { 2 } - 9 }
D) f(x)=2x2+1x23f ( x ) = \frac { 2 x ^ { 2 } + 1 } { x ^ { 2 } - 3 }
Question
Find an equation for a power function whose graph passes through the points (0, 0) and (2, 5).
Question
Find an equation for a polynomial function whose graph passes through the points (3, 0), (-1, 0) and (-3, 0).

A) f(x)=x3x29x9f ( x ) = x ^ { 3 } - x ^ { 2 } - 9 x - 9
B) f(x)=x3x2+9x+9f ( x ) = x ^ { 3 } - x ^ { 2 } + 9 x + 9
C) f(x)=x3x2+9x9f ( x ) = x ^ { 3 } - x ^ { 2 } + 9 x - 9
D) f(x)=x3+x29x9f ( x ) = x ^ { 3 } + x ^ { 2 } - 9 x - 9
Question
For the polynomial f(x)=x3(3x)2(1+x2)f ( x ) = x ^ { 3 } ( 3 - x ) ^ { 2 } \left( 1 + x ^ { 2 } \right) , determine the leading coefficient and the degree.

A) x7,3x ^ { 7 } , 3
B) x7,1x ^ { 7 } , 1
C) x7,3- x ^ { 7 } , 3
D) x7,1- x ^ { 7 } , 1
Question
Explain why the graph of f(x)=(x2)(x+3)(x+3)2f ( x ) = \frac { ( x - 2 ) ( x + 3 ) } { ( x + 3 ) ^ { 2 } } does not have a hole in it at x=3x = - 3 ?
Question
Find the domain of f(x)=ln(x+1)ln(x3)f ( x ) = \frac { \ln ( x + 1 ) } { \ln ( x - 3 ) }

A) (1,)( - 1 , \infty )
B) (3,)( 3 , \infty )
C) (1,3)(3,)( - 1,3 ) \cup ( 3 , \infty )
D) (3,4)(4,)( 3,4 ) \cup ( 4 , \infty )
Question
Find the domain of f(x)=ln(x3)ln(x+1)f ( x ) = \frac { \ln ( x - 3 ) } { \ln ( x + 1 ) }

A) (-1, \infty )
B) (1,0)(0,)( - 1,0 ) \cup ( 0 , \infty )
C) (3, \infty )
D) [3, \infty )
Question
Find the domain of f(x)=1e3xexf ( x ) = \frac { 1 } { e ^ { 3 x } - e ^ { x } }
Question
Find the exact value of 6log263log296 \log _ { 2 } 6 - 3 \log _ { 2 } 9
Question
Solve the following equation for XX : log2x+1x2=3\log _ { 2 } \frac { x + 1 } { x - 2 } = 3
Question
Solve the following equation for XX : 5e2x=65 e ^ { - 2 x } = 6
Question
Solve the following equation for XX : ex4xex=0e ^ { x } - 4 x e ^ { x } = 0

A) 0
B) 0 and 1/41 / 4
C) 1/41 / 4
D) 4
Question
Solve the following equation for XX : e2xex2=0e ^ { 2 x } - e ^ { x } - 2 = 0

A) 0
B) 2
C) ln(2)
D) -1
Question
Solve the following equation for XX : ln(6x)3ln(x2)=ln(3)\ln ( 6 x ) - 3 \ln \left( x ^ { 2 } \right) = \ln ( 3 )

A) 252 ^ { 5 }
B) 2
C) ln(2)
D) 25\sqrt [ 5 ] { 2 }
Question
Find the domain and range of f(x)=1+ln(x3)f ( x ) = 1 + \ln ( x - 3 )
Question
Find the domain and range of f(x)=2+ex1f ( x ) = 2 + e ^ { x - 1 }
Question
Expand the logarithm in terms of sums and differences: lnx3cos2xx2+1\ln \frac { x ^ { 3 } \cos ^ { 2 } x } { \sqrt { x ^ { 2 } + 1 } }
Question
Is f(x)=sin2xf ( x ) = \sin ^ { 2 } x an even function, odd function or neither?
Question
Express the following as a polynomial function of X:X : 5exp(ln3)+2ln(e3x(ex)2)5 \exp ( \ln 3 ) + 2 \ln \left( e ^ { 3 x } \left( e ^ { x } \right) ^ { 2 } \right)
Question
Which of the following expressions is/are defined?
A. sin1(15)\sin ^ { - 1 } \left( - \frac { 1 } { 5 } \right)
B. sin1(32)\sin ^ { - 1 } \left( \frac { 3 } { 2 } \right)
C. tan1(2)\tan ^ { - 1 } ( 2 )

A) A and B
B) B and C
C) A and C
D) Only A
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/89
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Functions and Precalculus
1
Which of the following points lie on the graph of f(x)=3x+4f ( x ) = \sqrt { 3 x + 4 } ?A (-3, 6) B (4, 4) C (0, 4)

A) A and B
B) B and C
C) Only B
D) Only C
C
2
Describe the function f(t)=5t+1f ( t ) = - 5 t + 1 as a set of ordered pairs.
(t,5t+1)( t , 5 t + 1 )
3
Construct a rule f:{1,2,3,4,5}{3,6,9,12}f : \{ 1,2,3,4,5 \} \rightarrow \{ 3,6,9,12 \} that is (a) a function,(b) a one-to-one function.
(a) f(1)=f(2)=3,f(3)=6,f(4)=9, and f(5)=12f ( 1 ) = f ( 2 ) = 3 , f ( 3 ) = 6 , f ( 4 ) = 9 , \text { and } f ( 5 ) = 12 (b) f(1)=3,f(3)=6,f(4)=9, and f(5)=12f ( 1 ) = 3 , f ( 3 ) = 6 , f ( 4 ) = 9 , \text { and } f ( 5 ) = 12
(There are other possible answers.)
4
Find the domain of f(x)=x24x29f ( x ) = \frac { \sqrt { x ^ { 2 } - 4 } } { x ^ { 2 } - 9 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
5
Find the average rate of change of the function f(x)=x+1f ( x ) = \sqrt { x + 1 } on the interval [0, 8].

A) 8/3
B) 3/8
C) 1/4
D) -1/4
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
6
Find the domain and range of f(x)=2x+1f ( x ) = \sqrt { 2 - x } + 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
7
Find the domain and range of f(x)=1x3f ( x ) = \frac { 1 } { \sqrt { x - 3 } }

A) Domain: (,3]( - \infty , 3 ] Range: [0,)[ 0 , \infty )
B) Domain: [0,)[ 0 , \infty ) Range: (,3]( - \infty , 3 ]
C) Domain: (,3)( - \infty , 3 ) Range: (0,)( 0 , \infty )
D) Domain: (3,)( 3 , \infty ) Range: (0,)( 0 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
8
Find the domain and range of f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 }

A) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,)( - \infty , \infty ) Range: (0,)( 0 , \infty )
D) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
9
Find the domain and range of f(x)=x2x2f ( x ) = \frac { | x - 2 | } { x - 2 }

A) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: (,)( - \infty , \infty )
D) Domain: (,2)(2,2)(2,)( - \infty , - 2 ) \cup ( - 2,2 ) \cup ( 2 , \infty ) Range: {1,1}\{ - 1,1 \}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
10
Find the domain and range of f(x)=9x2x+3f ( x ) = \frac { \sqrt { 9 - x ^ { 2 } } } { x + 3 }

A) Domain: [-3, 3] Range: [0,)[ 0 , \infty )
B) Domain: (-3, 3) Range: [0,)[ 0 , \infty )
C) Domain: (-3, 3] Range: [0,)[ 0 , \infty )
D) Domain: (-3, 3] Range: (0,)( 0 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
11
Find the domain and range of f(x)=x25x+4f ( x ) = \sqrt { x ^ { 2 } - 5 x + 4 }

A) Domain: (,4)(1,)( - \infty , - 4 ) \cup ( - 1 , \infty ) Range: (0,)( 0 , \infty )
B) Domain: (,1)(4,)( - \infty , 1 ) \cup ( 4 , \infty ) Range: [0,)[ 0 , \infty )
C) Domain: (,1][4,)( - \infty , 1 ] \cup [ 4 , \infty ) Range: [0,)[ 0 , \infty )
D) Domain: (,1][4,)( - \infty , 1 ] \cup [ 4 , \infty ) Range: (0,)( 0 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
12
If f(x)=x3+2f ( x ) = x ^ { 3 } + 2 , find f(a2)f \left( a ^ { 2 } \right)

A) a5+2a ^ { 5 } + 2
B) (a2+2)3\left( a ^ { 2 } + 2 \right) ^ { 3 }
C) a3+8a ^ { 3 } + 8
D) a6+2a ^ { 6 } + 2
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
13
Given y=1xy = 1 - \sqrt { x } , for what value(s) of XX is y=2y = - 2 ?

A) 4
B) 9
C) 16
D) None of these
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
14
Find the domain of f(x)=x29x+3f ( x ) = \frac { x ^ { 2 } - 9 } { \sqrt { x + 3 } }

A) Domain: [3,)[ - 3 , \infty )
B) Domain: (3,)( - 3 , \infty )
C) Domain: (,)( - \infty , \infty )
D) Domain: (,3)(3,)( - \infty , - 3 ) \cup ( - 3 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
15
Given y=x24x8y = x ^ { 2 } - 4 x - 8 , for what value(s) of XX is y=3y = - 3 ?

A) -5 and 1
B) 5 and 1
C) 4 and 2
D) -1 and 5
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
16
If f(x)=2x1f ( x ) = \sqrt { 2 x - 1 } , find f(1+h)f(1)h\frac { f ( 1 + h ) - f ( 1 ) } { h }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
17
If g(x)=x2+1xg ( x ) = \frac { x ^ { 2 } + 1 } { x } , find g(x+h)g(x)g ( x + h ) - g ( x )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
18
Which of the following is an odd function?

A) f(x)=x3x2f ( x ) = x ^ { 3 } - x ^ { 2 }
B) g(x)=5xg ( x ) = \frac { 5 } { x }
C) h(x)=x4x2h ( x ) = x ^ { 4 } - x ^ { 2 }
D) k(x)=x2k ( x ) = | x - 2 |
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
19
Is f(x)=2x3x2+2f ( x ) = \frac { 2 x ^ { 3 } } { x ^ { 2 } + 2 } an even function, an odd function or neither? Explain.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
20
Is g(x)=3x2+1g ( x ) = \frac { - 3 } { x ^ { 2 } + 1 } an even function, an odd function or neither? Explain.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
21
Is g(x)=x5xx2+1g ( x ) = \frac { x ^ { 5 } - x } { x ^ { 2 } + 1 } an even function, an odd function or neither? Explain.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
22
If ff is an odd function and gg is an even function, determine whether the following functions are odd, even or neither.
a. (f(x))2+(g(x))3( f ( x ) ) ^ { 2 } + ( g ( x ) ) ^ { 3 }
b. 5+g(x)5 + g ( x )
c. f(x3)f \left( x ^ { 3 } \right)
d. f(g(x))f ( g ( x ) )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
23
(-3, 4) is on the graph of an odd function f(x)f ( x ) find another point on the graph of f(x)f ( x )

A) (-3, 3)
B) (-3, 4)
C) (3, 4)
D) (3, -4)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
24
(2, 3) is on the graph of an even function g(x)g ( x ) find another point on the graph of g(x)g ( x )

A) (2, -3)
B) (-2, -3)
C) (-2, 3)
D) (-3, 2)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
25
Complete the entries in the table below to make ff an even function
x3210123f(x)523\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & - 3 & - 2 & - 1 & 0 & 1 & 2 & 3 \\\hline f ( x ) & 5 & & - 2 & & & 3 & \\\hline\end{array}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
26
Complete the entries in the table below to make ff an odd function
x3210123f(x)523\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & - 3 & - 2 & - 1 & 0 & 1 & 2 & 3 \\\hline f ( x ) & 5 & & - 2 & & & 3 & \\\hline\end{array}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
27
Find the inverse of f(x)=1+4x3f ( x ) = \frac { 1 + 4 x } { 3 }

A) f1(x)=3x+14f ^ { - 1 } ( x ) = \frac { 3 x + 1 } { 4 }
B) f1(x)=4x13f ^ { - 1 } ( x ) = \frac { 4 x - 1 } { 3 }
C) f1(x)=4x+13f ^ { - 1 } ( x ) = \frac { 4 x + 1 } { 3 }
D) f1(x)=3x14f ^ { - 1 } ( x ) = \frac { 3 x - 1 } { 4 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
28
Find the inverse of f(x)=x+2x2f ( x ) = \frac { x + 2 } { x - 2 }

A) f1(x)=x2x+2f ^ { - 1 } ( x ) = \frac { x - 2 } { x + 2 }
B) f1(x)=2x1x+2f ^ { - 1 } ( x ) = \frac { 2 x - 1 } { x + 2 }
C) f1(x)=2x2x1f ^ { - 1 } ( x ) = \frac { 2 x - 2 } { x - 1 }
D) f1(x)=2x+2x1f ^ { - 1 } ( x ) = \frac { 2 x + 2 } { x - 1 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
29
Find the inverse of f(x)=25xf ( x ) = - \sqrt { 2 - 5 x }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
30
Let f(x)=2x3+3x+1f ( x ) = 2 x ^ { 3 } + 3 x + 1 Find XX if f1(x)=1f ^ { - 1 } ( x ) = - 1

A) 3/2
B) -4
C) 0
D) 4
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
31
Let f(x)=x21+x3f ( x ) = \frac { x ^ { 2 } } { 1 + x ^ { 3 } } Find XX if f1(x)=2f ^ { - 1 } ( x ) = 2

A) 1/21 / 2
B) 9/4
C) 4/9
D) 2/5
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
32
Given that f(x)=x2+2f ( x ) = x ^ { 2 } + 2 , and g(x)=xg ( x ) = \sqrt { x } , find (fg)(x)( f \circ g ) ( x ) and (gf)(x)( g \circ f ) ( x ) , and their domains.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
33
Given that f(x)=1x+1f ( x ) = \frac { 1 } { x } + 1 and g(x)=11+xg ( x ) = \frac { 1 } { 1 + x } , find (fg)(2)( f \circ g ) ( 2 ) , and their domains.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
34
Table below defines two functions ff and gg Create an additional row for the table for the function (gf)(x)( g \circ f ) ( x )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
35
Table below defines two functions ff and gg Create an additional row for the table for the function (fg)(x)( f \circ g ) ( x )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
36
Table below defines two functions ff and gg Create an additional row for the table for the function g(x+1)g ( x + 1 )
x0123456f(x)0132302g(x)1011010\begin{array} { | l | l | l | l | l | l | l | l | } \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline f ( x ) & 0 & 1 & 3 & 2 & 3 & 0 & 2 \\\hline g ( x ) & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\\hline\end{array}
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
37
Express f(x)=(2+cos(x3))2f ( x ) = \left( 2 + \cos \left( x ^ { 3 } \right) \right) ^ { 2 } as a composition of two functions: gg and hh such that f=ghf = g \circ h
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
38
Express f(x)=1+x3f ( x ) = \sqrt [ 3 ] { 1 + \sqrt { x } } as a composition of three functions: gg and hh such that f=ghf = g \circ h
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
39
Given f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and g(x)=3x+2g ( x ) = 3 x + 2 , find all values of XX such that f(g(x))=g(f(x))f ( g ( x ) ) = g ( f ( x ) )

A) 2, 3
B) 0, 2
C) 0, - 2
D) 0, 3
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
40
Given f(x)=2x+1f ( x ) = 2 x + 1 and h(x)=2x2+4x+1h ( x ) = 2 x ^ { 2 } + 4 x + 1 , find a function gg such that f(g(x))=h(x)f ( g ( x ) ) = h ( x )

A) g(x)=(x2+1)2g ( x ) = \left( x ^ { 2 } + 1 \right) ^ { 2 }
B) g(x)=x2+2g ( x ) = x ^ { 2 } + 2
C) g(x)=x2+4xg ( x ) = x ^ { 2 } + 4 x
D) g(x)=x2+2xg ( x ) = x ^ { 2 } + 2 x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
41
Given that f(x)=x21f ( x ) = x ^ { 2 } - 1 , g(x)=1x+3g ( x ) = \frac { 1 } { x + 3 } , and h(x)=xh ( x ) = \sqrt { x } , find an equation for the following functions, evaluate them at x = 1 and find their domains.
(a) (4fh)(x)( 4 f h ) ( x )
(b) (fg)(x)\left( \frac { f } { g } \right) ( x )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
42
Given that f(x)=x21f ( x ) = x ^ { 2 } - 1 , g(x)=1x+3g ( x ) = \frac { 1 } { x + 3 } , and h(x)=xh ( x ) = \sqrt { x } , find an equation for f(x2)+3h(x)+(2fg)(x)f ( x - 2 ) + 3 h ( x ) + ( 2 f g ) ( x ) , evaluate it at x = 1 and find its domain.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
43
Write all the transformations applied to obtain the graph of y=x2+4xy = - x ^ { 2 } + 4 x from the graph of y=x2y = x ^ { 2 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
44
Write all the transformations applied to obtain the graph of y=2x+43y = | 2 x + 4 | - 3 from the graph of y=xy = | x |
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
45
Write all the transformations applied to obtain the graph of y=2x+1y = 2 - \sqrt { x + 1 } from the graph of y=xy = \sqrt { x }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
46
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of f(x)3f ( x ) - 3

A) (0, 7)
B) (3, 4)
C) (3, 7)
D) (0, 4)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
47
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of f(x2)f ( x - 2 )

A) (-2, 7)
B) (3, 5)
C) (1, 7)
D) (1,5)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
48
Suppose (3, 7) is a point on the graph of f(x)f ( x ) , find a point on the graph of 2f(x+1)32 f ( x + 1 ) - 3

A) (4, 7)
B) (4, 14)
C) (4, 11)
D) (8, 11)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
49
Given g(x)={3x<1x+1x1g ( x ) = \left\{ \begin{array} { c c } 3 & x < 1 \\\sqrt { x + 1 } & x \geq 1\end{array} \right. Find g(t21)g \left( t ^ { 2 } - 1 \right)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
50
Find the domain and range of the piecewise defined function: f(x)={1x51x5<x<5x5x>5f ( x ) = \left\{ \begin{array} { c c } - 1 & x \leq - 5 \\\frac { 1 } { x } & - 5 < x < 5 \\x - 5 & x > 5\end{array} \right.

A) Domain: (,)( - \infty , \infty ) Range: (,)( - \infty , \infty )
B) Domain: (,5)(5,)( - \infty , 5 ) \cup ( 5 , \infty ) Range: (,)( - \infty , \infty )
C) Domain: (,0)(0,5)(5,)( - \infty , 0 ) \cup ( 0,5 ) \cup ( 5 , \infty ) Range: [0,)[ 0 , \infty )
D) Domain: (,0)(0,5)(5,)( - \infty , 0 ) \cup ( 0,5 ) \cup ( 5 , \infty ) Range: {1}[0,)\{ - 1 \} \cup [ 0 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
51
f(x)={x2+3x<03xx0f ( x ) = \left\{ \begin{array} { r r } x ^ { 2 } + 3 & x < 0 \\3 - x & x \geq 0\end{array} \right. Calculate f(1),f(0)f ( - 1 ) , f ( 0 ) and f(2)f ( 2 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
52
A. If ff is an invertible function such that f(3)=3f ( 3 ) = 3 , then f1(3)=13f ^ { - 1 } ( 3 ) = \frac { 1 } { 3 } .
B. A one-to-one function is invertible.
C. If ff and gg are inverses of each other then ff and gg have the same domain.

A)A and B are true.
B)B and C are true.
C) Only B is true.
D) None of these
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
53
Write f(x)=32xf ( x ) = | 3 - 2 x | as a piecewise function.

A) f(x)={3+2xx3/232xx>3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x \leq 3 / 2 \\3 - 2 x & x > 3 / 2\end{array} \right.
B) f(x)={32xx3/23+2xx>3/2f ( x ) = \left\{ \begin{array} { c c } - 3 - 2 x & x \leq 3 / 2 \\3 + 2 x & x > 3 / 2\end{array} \right.
C) f(x)={3+2xx<3/232xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x < 3 / 2 \\3 - 2 x & x \geq 3 / 2\end{array} \right.
D) f(x)={3+2xx>3/232xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 2 x & x > 3 / 2 \\3 - 2 x & x \leq 3 / 2\end{array} \right.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
54
Write f(x)=4x2f ( x ) = \left| 4 - x ^ { 2 } \right| as a piecewise function.

A) f(x)={4+x22x24x2 otherwise f ( x ) = \left\{ \begin{array} { l } 4 + x ^ { 2 } - 2 \leq x \leq 2 \\4 - x ^ { 2 } \text { otherwise }\end{array} \right.
B) f(x)={4+x22x24x2 otherwise f ( x ) = \left\{ \begin{array} { c c } - 4 + x ^ { 2 } & - 2 \leq x \leq 2 \\4 - x ^ { 2 } & \text { otherwise }\end{array} \right.
C) f(x)={4+x22x24+x2 otherwise f ( x ) = \left\{ \begin{array} { c c } 4 + x ^ { 2 } & - 2 \leq x \leq 2 \\- 4 + x ^ { 2 } & \text { otherwise }\end{array} \right.
D) f(x)={4x22x24+x2 otherwise f ( x ) = \left\{ \begin{array} { c c } 4 - x ^ { 2 } & - 2 \leq x \leq 2 \\- 4 + x ^ { 2 } & \text { otherwise }\end{array} \right.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
55
Write f(x)=5+3x2f ( x ) = 5 + | 3 x - 2 | as a piecewise function.

A) f(x)={3+3xx<2/333xx3/2f ( x ) = \left\{ \begin{array} { c c } - 3 + 3 x & x < 2 / 3 \\3 - 3 x & x \geq 3 / 2\end{array} \right.
B) f(x)={33xx<2/33+3xx2/3f ( x ) = \left\{ \begin{array} { c c } - 3 - 3 x & x < 2 / 3 \\3 + 3 x & x \geq 2 / 3\end{array} \right.
C) f(x)={73xx<2/33+3xx2/3f ( x ) = \left\{ \begin{array} { l l } 7 - 3 x & x < 2 / 3 \\3 + 3 x & x \geq 2 / 3\end{array} \right.
D) f(x)={7+3xx<2/333xx2/3f ( x ) = \left\{ \begin{array} { l l } 7 + 3 x & x < 2 / 3 \\3 - 3 x & x \geq 2 / 3\end{array} \right.
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
56
Find the equation of a linear function whose graph has slope -2 and passes through the point (-1, 2). Write your answer in slope-intercept form.

A) y=2x5y = - 2 x - 5
B) y=2x+3y = - 2 x + 3
C) y=2x+4y = - 2 x + 4
D) y=2xy = - 2 x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
57
Find the equation of a linear function whose graph passes through the points (2, -1) and (-3, 2).

A) 5x+3y+7=05 x + 3 y + 7 = 0
B) 5x+3y+3=05 x + 3 y + 3 = 0
C) 3x+5y+3=03 x + 5 y + 3 = 0
D) 3x+5y+7=03 x + 5 y + 7 = 0
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
58
Find the equation of a linear function whose graph is perpendicular to x2y+2=0x - 2 y + 2 = 0 and passes through the point (1, 3).

A) y=2x5y = - 2 x - 5
B) y=2x+1y = - 2 x + 1
C) y=2x+5y = - 2 x + 5
D) y=2x5y = 2 x - 5
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
59
Given f(x)=x2+x2x1f ( x ) = \frac { x ^ { 2 } + x - 2 } { x - 1 } , find a linear function gg which is identical to ff
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
60
Sketch the graph of a possible rational function ff with roots at x=1x = - 1 and x=3x = 3 , a vertical asymptote at x=2x = 2 , and a horizontal asymptote at y=2y = - 2
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
61
Construct an equation of a rational function whose graph has no roots, no holes, has vertical asymptotes at x=3,x=3x = - 3 , x = 3 and a horizontal asymptote at y=2y = 2 There are many possible answers, but choose the only correct answer from those that are provided below.

A) f(x)=2x21x29f ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } - 9 }
B) f(x)=2x21x2+9f ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 9 }
C) f(x)=2x2+1x29f ( x ) = \frac { 2 x ^ { 2 } + 1 } { x ^ { 2 } - 9 }
D) f(x)=2x2+1x23f ( x ) = \frac { 2 x ^ { 2 } + 1 } { x ^ { 2 } - 3 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
62
Find an equation for a power function whose graph passes through the points (0, 0) and (2, 5).
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
63
Find an equation for a polynomial function whose graph passes through the points (3, 0), (-1, 0) and (-3, 0).

A) f(x)=x3x29x9f ( x ) = x ^ { 3 } - x ^ { 2 } - 9 x - 9
B) f(x)=x3x2+9x+9f ( x ) = x ^ { 3 } - x ^ { 2 } + 9 x + 9
C) f(x)=x3x2+9x9f ( x ) = x ^ { 3 } - x ^ { 2 } + 9 x - 9
D) f(x)=x3+x29x9f ( x ) = x ^ { 3 } + x ^ { 2 } - 9 x - 9
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
64
For the polynomial f(x)=x3(3x)2(1+x2)f ( x ) = x ^ { 3 } ( 3 - x ) ^ { 2 } \left( 1 + x ^ { 2 } \right) , determine the leading coefficient and the degree.

A) x7,3x ^ { 7 } , 3
B) x7,1x ^ { 7 } , 1
C) x7,3- x ^ { 7 } , 3
D) x7,1- x ^ { 7 } , 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
65
Explain why the graph of f(x)=(x2)(x+3)(x+3)2f ( x ) = \frac { ( x - 2 ) ( x + 3 ) } { ( x + 3 ) ^ { 2 } } does not have a hole in it at x=3x = - 3 ?
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
66
Find the domain of f(x)=ln(x+1)ln(x3)f ( x ) = \frac { \ln ( x + 1 ) } { \ln ( x - 3 ) }

A) (1,)( - 1 , \infty )
B) (3,)( 3 , \infty )
C) (1,3)(3,)( - 1,3 ) \cup ( 3 , \infty )
D) (3,4)(4,)( 3,4 ) \cup ( 4 , \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
67
Find the domain of f(x)=ln(x3)ln(x+1)f ( x ) = \frac { \ln ( x - 3 ) } { \ln ( x + 1 ) }

A) (-1, \infty )
B) (1,0)(0,)( - 1,0 ) \cup ( 0 , \infty )
C) (3, \infty )
D) [3, \infty )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
68
Find the domain of f(x)=1e3xexf ( x ) = \frac { 1 } { e ^ { 3 x } - e ^ { x } }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
69
Find the exact value of 6log263log296 \log _ { 2 } 6 - 3 \log _ { 2 } 9
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the following equation for XX : log2x+1x2=3\log _ { 2 } \frac { x + 1 } { x - 2 } = 3
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the following equation for XX : 5e2x=65 e ^ { - 2 x } = 6
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
72
Solve the following equation for XX : ex4xex=0e ^ { x } - 4 x e ^ { x } = 0

A) 0
B) 0 and 1/41 / 4
C) 1/41 / 4
D) 4
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
73
Solve the following equation for XX : e2xex2=0e ^ { 2 x } - e ^ { x } - 2 = 0

A) 0
B) 2
C) ln(2)
D) -1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
74
Solve the following equation for XX : ln(6x)3ln(x2)=ln(3)\ln ( 6 x ) - 3 \ln \left( x ^ { 2 } \right) = \ln ( 3 )

A) 252 ^ { 5 }
B) 2
C) ln(2)
D) 25\sqrt [ 5 ] { 2 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
75
Find the domain and range of f(x)=1+ln(x3)f ( x ) = 1 + \ln ( x - 3 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
76
Find the domain and range of f(x)=2+ex1f ( x ) = 2 + e ^ { x - 1 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
77
Expand the logarithm in terms of sums and differences: lnx3cos2xx2+1\ln \frac { x ^ { 3 } \cos ^ { 2 } x } { \sqrt { x ^ { 2 } + 1 } }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
78
Is f(x)=sin2xf ( x ) = \sin ^ { 2 } x an even function, odd function or neither?
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
79
Express the following as a polynomial function of X:X : 5exp(ln3)+2ln(e3x(ex)2)5 \exp ( \ln 3 ) + 2 \ln \left( e ^ { 3 x } \left( e ^ { x } \right) ^ { 2 } \right)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
80
Which of the following expressions is/are defined?
A. sin1(15)\sin ^ { - 1 } \left( - \frac { 1 } { 5 } \right)
B. sin1(32)\sin ^ { - 1 } \left( \frac { 3 } { 2 } \right)
C. tan1(2)\tan ^ { - 1 } ( 2 )

A) A and B
B) B and C
C) A and C
D) Only A
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 89 flashcards in this deck.