Exam 15: Functions and Precalculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the inverse of f(x)=1+4x3f ( x ) = \frac { 1 + 4 x } { 3 }

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

D

Given that f(x)=x2+2f ( x ) = x ^ { 2 } + 2 , and g(x)=xg ( x ) = \sqrt { x } , find (fg)(x)( f \circ g ) ( x ) and (gf)(x)( g \circ f ) ( x ) , and their domains.

Free
(Essay)
4.9/5
(39)
Correct Answer:
Verified

f(g(x))=x+2 Domain: [0,)g(f(x))=x2+2 Domain: (,)\begin{array} { l l } f ( g ( x ) ) = x + 2 & \text { Domain: } [ 0 , \infty ) \\g ( f ( x ) ) = \sqrt { x ^ { 2 } + 2 } & \text { Domain: } ( - \infty , \infty )\end{array}

If g(x)=x2+1xg ( x ) = \frac { x ^ { 2 } + 1 } { x } , find g(x+h)g(x)g ( x + h ) - g ( x )

Free
(Essay)
4.8/5
(39)
Correct Answer:
Verified

2xh+x2x\frac { 2 x h + x ^ { 2 } } { x }

Given that f(x)=x21f ( x ) = x ^ { 2 } - 1 , g(x)=1x+3g ( x ) = \frac { 1 } { x + 3 } , and h(x)=xh ( x ) = \sqrt { x } , find an equation for f(x2)+3h(x)+(2fg)(x)f ( x - 2 ) + 3 h ( x ) + ( 2 f g ) ( x ) , evaluate it at x = 1 and find its domain.

(Essay)
4.9/5
(43)

Find the domain of f(x)=1e3xexf ( x ) = \frac { 1 } { e ^ { 3 x } - e ^ { x } }

(Essay)
4.9/5
(34)

Let f(x)=x21+x3f ( x ) = \frac { x ^ { 2 } } { 1 + x ^ { 3 } } Find XX if f1(x)=2f ^ { - 1 } ( x ) = 2

(Multiple Choice)
4.8/5
(39)

Construct an equation of a rational function whose graph has no roots, no holes, has vertical asymptotes at x=3,x=3x = - 3 , x = 3 and a horizontal asymptote at y=2y = 2 There are many possible answers, but choose the only correct answer from those that are provided below.

(Multiple Choice)
4.9/5
(33)

Is g(x)=x5xx2+1g ( x ) = \frac { x ^ { 5 } - x } { x ^ { 2 } + 1 } an even function, an odd function or neither? Explain.

(Essay)
4.8/5
(28)

Find the domain and range of f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 }

(Multiple Choice)
4.9/5
(35)

Write the following expression as an algebraic expression that does not involve trigonometric or inverse trigonometric functions sin2(tan12x)\sin ^ { 2 } \left( \tan ^ { - 1 } 2 x \right)

(Multiple Choice)
4.9/5
(43)

A. If ff is an invertible function such that f(3)=3f ( 3 ) = 3 , then f1(3)=13f ^ { - 1 } ( 3 ) = \frac { 1 } { 3 } . B. A one-to-one function is invertible. C. If ff and gg are inverses of each other then ff and gg have the same domain.

(Multiple Choice)
4.8/5
(37)

Find the domain of f(x)=ln(x+1)ln(x3)f ( x ) = \frac { \ln ( x + 1 ) } { \ln ( x - 3 ) }

(Multiple Choice)
4.9/5
(29)

Which of the following is an odd function?

(Multiple Choice)
4.7/5
(39)

Solve the following equation for x tan2(sec12x)=0\tan ^ { 2 } \left( \sec ^ { - 1 } 2 x \right) = 0

(Essay)
4.9/5
(34)

Table below defines two functions ff and gg Create an additional row for the table for the function g(x+1)g ( x + 1 ) x 0 1 2 3 4 5 6 f(x) 0 1 3 2 3 0 2 g(x) 1 0 1 1 0 1 0

(Essay)
4.8/5
(32)

Find the domain and range of f(x)=x2x2f ( x ) = \frac { | x - 2 | } { x - 2 }

(Multiple Choice)
4.8/5
(28)

Given y=1xy = 1 - \sqrt { x } , for what value(s) of XX is y=2y = - 2 ?

(Multiple Choice)
4.8/5
(37)

If ff is an odd function and gg is an even function, determine whether the following functions are odd, even or neither. a. (f(x))2+(g(x))3( f ( x ) ) ^ { 2 } + ( g ( x ) ) ^ { 3 } b. 5+g(x)5 + g ( x ) c. f(x3)f \left( x ^ { 3 } \right) d. f(g(x))f ( g ( x ) )

(Short Answer)
4.9/5
(30)

Find the domain of f(x)=x24x29f ( x ) = \frac { \sqrt { x ^ { 2 } - 4 } } { x ^ { 2 } - 9 }

(Essay)
4.7/5
(38)

Construct a rule f:{1,2,3,4,5}{3,6,9,12}f : \{ 1,2,3,4,5 \} \rightarrow \{ 3,6,9,12 \} that is (a) a function,(b) a one-to-one function.

(Essay)
4.8/5
(31)
Showing 1 - 20 of 89
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)