Deck 17: Vector Calculus

Full screen (f)
exit full mode
Question
Compute the gradient of the function f(x, y) = <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos x.

A) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y - 2y cos x) i + (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) j
B) (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y - 2y cos x) j
C) (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y + 2y cos x) j
D) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y + 2y cos x) i + (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) j
E) (2x sin y) i + (2y cos x) j
Use Space or
up arrow
down arrow
to flip the card.
Question
Find grad f(1, 0, -1) if f(x, y, z) = xy + yz.

A) i
B) j
C) 0
D) k
E) i + j + k
Question
If f(x, y, z) = <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> z + cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ), find <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> f.

A) 2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> + <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
B) 2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
C) -2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
D) -2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
E) -2zx cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
Question
Compute div F for F = (2x + yz) i + ( <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> ) j + (x sin(z) + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> ) k.

A) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
B) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> - x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
C) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
D) 2 + 2y + x cos(z)
E) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> - cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
Question
Compute curl F for F = (x - z) i + (y - x) j + (z - y) k.

A) - i + j - k
B) i + j + k
C) - i + j + k
D) i - j
E) 0
Question
Define the curl of a vector field F.

A) F × <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F <div style=padding-top: 35px>
B) <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F <div style=padding-top: 35px> F
C) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 × F
D) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 . F
E) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 F
Question
Let  <strong>Let   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?</strong> A)  \textbf{    curl (grad      }   ) B)  \textbf{      div (curl F)   }  C)  \textbf{      grad (div F)   }  D)  \textbf{ div (grad         }   ) E)  \textbf{      curl (divF)   }  <div style=padding-top: 35px>  be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?

A)  curl (grad \textbf{ curl (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
B)  div (curl F) \textbf{ div (curl F) }
C)  grad (div F) \textbf{ grad (div F) }
D)  div (grad \textbf{ div (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
E)  curl (divF) \textbf{ curl (divF) }
Question
Let  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  = arctan(x) - arctan(z) and  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  =  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  . Find a simplified expression for  grad\textbf{ grad} (11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 ) ×  grad\textbf{ grad} (11ee7bac_77f1_7c2b_ae82_019616e1397c_TB9661_11 ) .

A)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
B) 0 (zero vector field)
C)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
D) 0 (zero scalar field)
E) -  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
Question
Compute  div F \textbf{ div F } for  F \textbf{ F } =  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  sin 2x, cos 2y, tan 2z  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  .

A) 2cos 2x + 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
B) -cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
C) 2cos 2x - 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
D) cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
E) 2cos 2x - 2sin 2y + 2sec z
Question
Find https://storage.examlex.com/TB9661/<strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> .F if F (x, y, z) = <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> xy <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> , <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> yz, -xyz <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> .

A) 2y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> yz - xy
B) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + 2xyz - xy
C) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z - xy
D) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z + 2 xy
E) 2y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z + xy
Question
Compute the divergence for the vector field F = (xy + xz) i + (yz + yx) j + (zx + zy) k.

A) 2y + 2z + 2x
B) 3y + 2z + x
C) y + z + x
D) 2y -2 z + 2x
E) y + 2z + 3x
Question
Find the acute angle (to the nearest degree) between the normals of the paraboloid z = x2 + y2 - 6 and the sphere x2 + y2 + z2 = 26 at the point (-3, 1, 4) on both surfaces.
Question
Calculate the divergence of the vector field F(x, y, z) = ( <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - xz) i + (z <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> ) j - xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> k.

A) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z - zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - y <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
B) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
C) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
D) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
E) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
Question
Calculate the curl of the vector field V = x sin y i + cos y j + xy k.

A) x i + y j - x cos y k
B) x i - y j + x cos y k
C) x i - y j - x cos y k
D) x i + y j + x cos y k
E) -x i + y j + y cos y k
Question
Calculate the divergence of the vector field F = <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz <div style=padding-top: 35px> y i + <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz <div style=padding-top: 35px> x j + xyz k.

A) 5xy
B) 4xy + yz
C) 6xy
D) 2xy + 2yz + xz
E) 4xy + xz
Question
  . F = F .   for any sufficiently smooth vector field F.<div style=padding-top: 35px> . F = F . 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 for any sufficiently smooth vector field F.
Question
Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.

A) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px>
B) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> k
C) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> k
D) 0
E) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px>
Question
Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.

A) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
B) - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
C) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
D) 0
E) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
Question
The divergence of a vector field F is defined by

A) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F <div style=padding-top: 35px> F
B) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F <div style=padding-top: 35px> . F
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . (11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
Question
The curl of a vector field F is defined by

A) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F <div style=padding-top: 35px> .(11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
B) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
C) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F <div style=padding-top: 35px>
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . F
Question
Compute the divergence and the curl of the vector field r = x i + y j + z k.

A) <strong>Compute the divergence and the curl of the vector field r = x i + y j + z k.</strong> A)   . r = 2,   × r = 0 B)  . r = 3,  × r = 0 C)   . r = 3,   × r = r D)   . r = 1,   × r = 0 E)   . r = 2,   × r = r <div style=padding-top: 35px> . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
B)11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11× r = 0
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 1, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
Question
If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify <strong>If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify   .</strong> A) 0 B) r C) 2r D) 3r E) 4r <div style=padding-top: 35px> .

A) 0
B) r
C) 2r
D) 3r
E) 4r
Question
If r = x i + y j + z k and r = |r|, evaluate and simplify div <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px> .

A) 0
B) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
Question
For r = x i + y j + z k, evaluate and simplify <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px> . <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px> .

A) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
B) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
C) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
D) |r|
E) 0
Question
Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.

A) F = B
B) F = r
C) F = r × B
D) F = 3(B × r)
E) F = <strong>Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.</strong> A) F = B B) F = r C) F = r × B D) F = 3(B × r) E) F =   (B × r) <div style=padding-top: 35px> (B × r)
Question
Verify that the vector field F = (2x y2z2 - sin(x)sin(y)) i + (2 x2y z2+ cos(x)cos(y)) j + (2x2y2 z + ) k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.

A) <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
B) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + 1
C) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + sin(x)cos(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + 1
D) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
E) f(x, y, z) = xyz + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
Question
If the vector field H = f(r) r, r \neq 0 is solenoidal, find an expression for f(r).

A) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
B) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
C) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
D) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
E) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
Question
Show that div ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> r) = (n + 3) Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> .You may use the following fact: grad ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> ) = n Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> r
Question
A vector field F is called  solenoidal \textbf{ solenoidal } in a domain D if

A)  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>  F = 0 in D
B) curl(F) = 0 in D
C) F =  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>   <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>  in D for some scalar field 11ee7bad_3b7e_852d_ae82_0ffea7b87591_TB9661_11
D) div(F) = 0 in D
E) grad(F) = 0 in D
Question
Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y )cosh (c z) i + b cos (  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y)cosh (c z) j + c sin(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y)sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .

A) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c = 3
B) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = 2, c = 2
C) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  ± 2
D) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = 2, c = ± 3
E) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c = 9
Question
Verify that the vector field F = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> (x, y, z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k.

A) (xyz + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
B) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
C) (xyz - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
D) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> z - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
E) xyz i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
Question
For what value of the constant C is the vector field F = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + C(xy + yz) j + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> k. solenoidal?
If C has that value, find a vector potential G for F having the form G(x, y, z) = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> (x, y, z) i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k.

A) C = -2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
B) C = -2, G = - y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
C) C = -2, G = x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
D) C = -2, G = - x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
E) C = 2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
Question
Show that there does not exist a twice continuously differentiable vector field G such that  curl G \textbf{ curl G } = x i + y j + z k.
Question
A vector field F satisfying the equation div F = 0 in domain D is called:

A) irrotational in D
B) a scalar potential
C) solenoidal in D
D) conservative in D
E) a vector potential
Question
Let <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> . (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F ) = (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 ) . F + 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11. F) using the notations grad , div or curl.

A) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
B) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = curl (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 grad (F)
C) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
D) grad (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 curl (F)
E) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> grad (F)
Question
Every conservative vector field is irrotational.
Question
If r = x i + y j + z k and k is a constant vector field in R3, then

A) div ( k × r) = 0
B) div ( k × r) = 0.
C) grad ( k . r) = 2k
D) curl ( k × r) = 0
E) curl ( k × r) = 0.
Question
Use Green's Theorem to evaluate the line integral <strong>Use Green's Theorem to evaluate the line integral   counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).</strong> A) 18 B) 180 C) -36 D) 0 E) 36 <div style=padding-top: 35px> counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).

A) 18
B) 180
C) -36
D) 0
E) 36
Question
Evaluate the integral <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> ( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> ) - 2y) dx + (3x - ysin( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).

A) 5
B) 20
C) 0
D) 10
E) 2
Question
Use Green's Theorem to compute <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 <div style=padding-top: 35px> + xy) dx + ( <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 <div style=padding-top: 35px> + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).

A) -9
B) -12
C) 2
D) 0
E) 12
Question
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   clockwise around the circle of radius 3 centred at the origin.</strong> A) 18   \pi  B) 9   \pi  C) 127   \pi  D) 243   \pi  E) 0 <div style=padding-top: 35px>  clockwise around the circle of radius 3 centred at the origin.

A) 18 π\pi
B) 9 π\pi
C) 127 π\pi
D) 243 π\pi
E) 0
Question
Use Green's Theorem to compute the integral <strong>Use Green's Theorem to compute the integral   counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).</strong> A) -198 B) -210 C) -126 D) -72 E) -21 <div style=padding-top: 35px> counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).

A) -198
B) -210
C) -126
D) -72
E) -21
Question
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.</strong> A) 3 B) 2 C) 1 D) 0 E)   \pi  <div style=padding-top: 35px>  where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.

A) 3
B) 2
C) 1
D) 0
E) π\pi
Question
Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px> . In terms of these quantities, evaluate the line integral <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px> .

A) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
B) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
C) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
D) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
E) -A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
Question
Evaluate the integral <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px> - <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px> dx counterclockwise around the closed curve formed by y = x3 and y = x, between the points (0, 0) and (1, 1).

A) 1
B) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
Question
Evaluate <strong>Evaluate   clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).</strong> A) 27 B) 9 C) -9 D) -27 E) 0 <div style=padding-top: 35px> clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).

A) 27
B) 9
C) -9
D) -27
E) 0
Question
Let F = -  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  i +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  j and let C be the boundary of circle  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  = 9 oriented counterclockwise. Use Green's Theorem to evaluate  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>

A) 9 π\pi
B) 0
C) -2 π\pi
D) 2 π\pi
E) 3 π\pi
Question
Find the flux of F = x i + 2y j out of the circular disk of radius 2 centred at (3, -5).

A) 8 π\pi
B) 12 π\pi
C) 16 π\pi
D) 24 π\pi
E) 4 π\pi
Question
If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 <div style=padding-top: 35px> (ii) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 <div style=padding-top: 35px> dx + 3xy dy

A) (i) 36 (ii) 15
B) (i) -36 (ii) 18
C) (i) -18 (ii) 36
D) (i) -4 (ii) 2
E) (i) 432 (ii) 1080
Question
Find the flux of F = 2  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>  y i +  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>   <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>  j out of the rectangle 0 \le x \le ln(3), 0 \le y \le 2.

A) 4
B) 8
C) 16
D) 32
E) 24
Question
Find the flux of F =  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  out of (a) the disk  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  +  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  \le  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.

A) (a) 0         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 0
B) (a) 2 π\pi         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
C) (a) 2 π\pi a         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
D) (a) 0         ~~~~~~~~ (b) 2 π\pi         ~~~~~~~~ (c) 0
E) None of the above
Question
Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A = Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy).<div style=padding-top: 35px> Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy).<div style=padding-top: 35px> dx + x dy).
Question
Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .

A) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use a line integral to find the area enclosed by the x-axis and one arch of the cycloid given parametrically by the equations x(t) = 3(t - sin(t)), y(t) =3(1 - cos(t)), 0 \le t \le 2 π\pi .

A) 36 π\pi
B) 18 π\pi
C) 27 π\pi
D) 54 π\pi
E) 9 π\pi
Question
Find the flux of F = x i + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> j + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> k out of the cube bounded by the coordinate planes and the planes <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> and <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>

A) 0
B) 1
C) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>
D) 3
E) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  F = x  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  y i + xz j + z  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  .

A) 32 π\pi
B) 34 π\pi
C) 36 π\pi
D) 38 π\pi
E) 72 π\pi
Question
Evaluate the integral  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  where R is the region  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  \le 25 and  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>

A) 12500 π\pi
B) 2500 π\pi
C) 6250 π\pi
D) 1250 π\pi
E) 25000 π\pi
Question
Use the Divergence Theorem to find the outward flux of F =  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi  <div style=padding-top: 35px>  across the boundary of the region  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi  <div style=padding-top: 35px>

A) 12 π\pi
B) 16 π\pi
C) 3 π\pi
D) π\pi
E) 60 π\pi
Question
Find the flux of r = x i + y j + z k out of the cone with base  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi  <div style=padding-top: 35px>  +  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi  <div style=padding-top: 35px>  \le 16, z = 0, and vertex at (0, 0, 3).

A) 46 π\pi
B) 48 π\pi
C) 50 π\pi
D) 52 π\pi
E) 16 π\pi
Question
Calculate the surface integral  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi  <div style=padding-top: 35px>  where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi  <div style=padding-top: 35px>  with outward normal.

A) 32 π\pi
B) 16 π\pi
C) 8 π\pi
D) 64 π\pi
E) 256 π\pi
Question
Find the flux of <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> i - xy j +3z k out of the solid region bounded by the parabolic cylinder <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> and the planes <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> , and <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px>

A) 208
B) 112
C) 64
D) 48
E) 176
Question
Evaluate  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)

A)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
B) π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
C)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
D) 2 π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
E)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
Question
Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.

A) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
B) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
C) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
D) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
E) 3 Ah
Question
Evaluate the surface integral <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px> where <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px> is the unit inner normal to the surface S of the region lying between the two paraboloids <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px>

A) <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px>
B) 1
C) 0
D) 2
E) -1
Question
Find the flux of G = (x <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + 2zy) i + (y <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> - <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ) j + <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> z k outward through the sphere <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use the Divergence Theorem to evaluate the surface integral <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where S is the part of the cone <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> below z = 2, and <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)

A) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
If F = x i + y j, calculate the flux of F upward through the part of the surface z = 4 - x2 - y2 that lies above the (x, y) plane by applying the Divergence Theorem to the volume bounded by the surface and the disk that it cuts out of the (x, y) plane.

A) 14 π\pi
B) 16 π\pi
C) 18 π\pi
D) 20 π\pi
E) 8 π\pi
Question
Find the outward flux of F = ln(  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  ) i -  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  j + z  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  k across the boundary of the region  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>

A) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi - 3 π\pi ln 2 + 2 π\pi
B) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi - 3 π\pi ln 2 - 2 π\pi
C) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi + 3 π\pi ln 2 - 2 π\pi
D) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi + 3 π\pi ln 2 + 2 π\pi
E) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi ln 2 - 2 π\pi
Question
A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of <strong>A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of   out of R across its boundary.</strong> A) 60 B) 50 C) 20 D) 15 E) 90 <div style=padding-top: 35px> out of R across its boundary.

A) 60
B) 50
C) 20
D) 15
E) 90
Question
Find  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  , where F(x, y, z) = x  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  y i +  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  ln x j - z  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  y k, S is the sphere of radius 3 centred at the origin, and  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  is the unit outward normal field on S.

A) 24 π\pi
B) 12 π\pi
C) 36 π\pi
D) 72 π\pi
E) 54 π\pi
Question
Given F = 4y i + x j + 2z k, find  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  over the hemisphere  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  with outward normal  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  .

A) 2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
B) -2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
C) -3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
D) 3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
E) 0
Question
Evaluate the integral of <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 <div style=padding-top: 35px> over the portion of the ellipse <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 <div style=padding-top: 35px> in the first quadrant, traversed in the counterclockwise direction.

A) -31
B) -32
C) -33
D) -34
E) -30
Question
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.</strong> A) 0 B) 1 C) -1 D) 2 E) -2 <div style=padding-top: 35px> where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.

A) 0
B) 1
C) -1
D) 2
E) -2
Question
Let F be a smooth vector field in 3-space satisfying the condition  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above <div style=padding-top: 35px>  Find the flux of curl F upward through the part of the  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above <div style=padding-top: 35px>  lying above the xy-plane.

A) 81 π\pi
B) 72 π\pi
C) 27 π\pi
D) 18 π\pi
E) None of the above
Question
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>  where C is the circle given by the parametric equations  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>  for  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>

A) -  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>
B) - π\pi
C) π\pi
D) 2 π\pi
E)  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>
Question
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi  <div style=padding-top: 35px>  where C is the circle  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi  <div style=padding-top: 35px>  oriented clockwise as seen from high on the z-axis.

A) 40 π\pi
B) 45 π\pi
C) 50 π\pi
D) 55 π\pi
E) 35 π\pi
Question
Evaluate <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> , where F = y i + zx j + <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> k and C are the positively oriented boundary of the triangle in which the plane <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> with upward normal, intersects the first octant of space.

A) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
B) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
C) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
D) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
Question
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 <div style=padding-top: 35px> + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 <div style=padding-top: 35px> by the three coordinate planes. C has orientation inherited from the upward normal on P.

A) 18
B) -6
C) 6
D) 24
E) -24
Question
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.</strong> A) 0 B) 1 C) 2 D) -2 E) -1 <div style=padding-top: 35px> where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.

A) 0
B) 1
C) 2
D) -2
E) -1
Question
Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0 <div style=padding-top: 35px>  with the plane  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0 <div style=padding-top: 35px>  The orientation of the curve is consistent with the upward normal on the plane.

A) 8 π\pi
B) 6 π\pi
C) 4 π\pi
D) 2 π\pi
E) 0
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/92
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 17: Vector Calculus
1
Compute the gradient of the function f(x, y) = <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos x.

A) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y - 2y cos x) i + (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) j
B) (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y - 2y cos x) j
C) (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y + 2y cos x) j
D) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y + 2y cos x) i + (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) j
E) (2x sin y) i + (2y cos x) j
(2x sin y - (2x sin y -   sin x) i + (   cos y + 2y cos x) j sin x) i + ( (2x sin y -   sin x) i + (   cos y + 2y cos x) j cos y + 2y cos x) j
2
Find grad f(1, 0, -1) if f(x, y, z) = xy + yz.

A) i
B) j
C) 0
D) k
E) i + j + k
0
3
If f(x, y, z) = <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k z + cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ), find <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k f.

A) 2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k + <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
B) 2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
C) -2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
D) -2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
E) -2zx cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
-2zx sin(z -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k ) i + 2yz j + ( -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k - -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k sin(z -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k )) k
4
Compute div F for F = (2x + yz) i + ( <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   ) j + (x sin(z) + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   ) k.

A) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
B) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   - x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
C) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
D) 2 + 2y + x cos(z)
E) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   - cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
5
Compute curl F for F = (x - z) i + (y - x) j + (z - y) k.

A) - i + j - k
B) i + j + k
C) - i + j + k
D) i - j
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
6
Define the curl of a vector field F.

A) F × <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F
B) <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F F
C) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 × F
D) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 . F
E) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 F
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
7
Let  <strong>Let   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?</strong> A)  \textbf{    curl (grad      }   ) B)  \textbf{      div (curl F)   }  C)  \textbf{      grad (div F)   }  D)  \textbf{ div (grad         }   ) E)  \textbf{      curl (divF)   }   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?

A)  curl (grad \textbf{ curl (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
B)  div (curl F) \textbf{ div (curl F) }
C)  grad (div F) \textbf{ grad (div F) }
D)  div (grad \textbf{ div (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
E)  curl (divF) \textbf{ curl (divF) }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
8
Let  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  = arctan(x) - arctan(z) and  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  =  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  . Find a simplified expression for  grad\textbf{ grad} (11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 ) ×  grad\textbf{ grad} (11ee7bac_77f1_7c2b_ae82_019616e1397c_TB9661_11 ) .

A)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
B) 0 (zero vector field)
C)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
D) 0 (zero scalar field)
E) -  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
9
Compute  div F \textbf{ div F } for  F \textbf{ F } =  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  sin 2x, cos 2y, tan 2z  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  .

A) 2cos 2x + 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
B) -cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
C) 2cos 2x - 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
D) cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
E) 2cos 2x - 2sin 2y + 2sec z
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
10
Find https://storage.examlex.com/TB9661/<strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy .F if F (x, y, z) = <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy xy <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy , <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy yz, -xyz <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy .

A) 2y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy yz - xy
B) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + 2xyz - xy
C) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z - xy
D) y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z + 2 xy
E) 2y <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://storage.examlex.com/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z + xy
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
11
Compute the divergence for the vector field F = (xy + xz) i + (yz + yx) j + (zx + zy) k.

A) 2y + 2z + 2x
B) 3y + 2z + x
C) y + z + x
D) 2y -2 z + 2x
E) y + 2z + 3x
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
12
Find the acute angle (to the nearest degree) between the normals of the paraboloid z = x2 + y2 - 6 and the sphere x2 + y2 + z2 = 26 at the point (-3, 1, 4) on both surfaces.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
13
Calculate the divergence of the vector field F(x, y, z) = ( <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - xz) i + (z <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   ) j - xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   k.

A) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z - zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - y <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
B) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
C) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
D) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
E) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
14
Calculate the curl of the vector field V = x sin y i + cos y j + xy k.

A) x i + y j - x cos y k
B) x i - y j + x cos y k
C) x i - y j - x cos y k
D) x i + y j + x cos y k
E) -x i + y j + y cos y k
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
15
Calculate the divergence of the vector field F = <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz y i + <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz x j + xyz k.

A) 5xy
B) 4xy + yz
C) 6xy
D) 2xy + 2yz + xz
E) 4xy + xz
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
16
  . F = F .   for any sufficiently smooth vector field F. . F = F . 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 for any sufficiently smooth vector field F.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
17
Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.

A) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +
B) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   k
C) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   k
D) 0
E) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
18
Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.

A) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
B) - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
C) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
D) 0
E) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
19
The divergence of a vector field F is defined by

A) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F F
B) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F . F
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . (11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
20
The curl of a vector field F is defined by

A) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F .(11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
B) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
C) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . F
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
21
Compute the divergence and the curl of the vector field r = x i + y j + z k.

A) <strong>Compute the divergence and the curl of the vector field r = x i + y j + z k.</strong> A)   . r = 2,   × r = 0 B)  . r = 3,  × r = 0 C)   . r = 3,   × r = r D)   . r = 1,   × r = 0 E)   . r = 2,   × r = r . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
B)11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11× r = 0
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 1, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
22
If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify <strong>If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify   .</strong> A) 0 B) r C) 2r D) 3r E) 4r .

A) 0
B) r
C) 2r
D) 3r
E) 4r
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
23
If r = x i + y j + z k and r = |r|, evaluate and simplify div <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   .

A) 0
B) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
C) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
D) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
E) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
24
For r = x i + y j + z k, evaluate and simplify <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 . <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 .

A) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
B) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
C) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
D) |r|
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
25
Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.

A) F = B
B) F = r
C) F = r × B
D) F = 3(B × r)
E) F = <strong>Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.</strong> A) F = B B) F = r C) F = r × B D) F = 3(B × r) E) F =   (B × r) (B × r)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
26
Verify that the vector field F = (2x y2z2 - sin(x)sin(y)) i + (2 x2y z2+ cos(x)cos(y)) j + (2x2y2 z + ) k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.

A) <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
B) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + 1
C) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + sin(x)cos(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + 1
D) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
E) f(x, y, z) = xyz + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
27
If the vector field H = f(r) r, r \neq 0 is solenoidal, find an expression for f(r).

A) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
B) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
C) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
D) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
E) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
28
Show that div ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r r) = (n + 3) Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r .You may use the following fact: grad ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r ) = n Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r r
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
29
A vector field F is called  solenoidal \textbf{ solenoidal } in a domain D if

A)  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D  F = 0 in D
B) curl(F) = 0 in D
C) F =  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D   <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D  in D for some scalar field 11ee7bad_3b7e_852d_ae82_0ffea7b87591_TB9661_11
D) div(F) = 0 in D
E) grad(F) = 0 in D
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
30
Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y )cosh (c z) i + b cos (  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y)cosh (c z) j + c sin(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y)sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .

A) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c = 3
B) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = 2, c = 2
C) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  ± 2
D) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = 2, c = ± 3
E) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c = 9
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
31
Verify that the vector field F = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k (x, y, z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k.

A) (xyz + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
B) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
C) (xyz - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
D) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k z - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
E) xyz i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
32
For what value of the constant C is the vector field F = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + C(xy + yz) j + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k k. solenoidal?
If C has that value, find a vector potential G for F having the form G(x, y, z) = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k (x, y, z) i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k.

A) C = -2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
B) C = -2, G = - y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
C) C = -2, G = x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
D) C = -2, G = - x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
E) C = 2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
33
Show that there does not exist a twice continuously differentiable vector field G such that  curl G \textbf{ curl G } = x i + y j + z k.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
34
A vector field F satisfying the equation div F = 0 in domain D is called:

A) irrotational in D
B) a scalar potential
C) solenoidal in D
D) conservative in D
E) a vector potential
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
35
Let <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) . (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F ) = (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 ) . F + 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11. F) using the notations grad , div or curl.

A) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
B) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = curl (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 grad (F)
C) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
D) grad (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 curl (F)
E) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://storage.examlex.com/TB9661/https://storage.examlex.com/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) grad (F)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
36
Every conservative vector field is irrotational.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
37
If r = x i + y j + z k and k is a constant vector field in R3, then

A) div ( k × r) = 0
B) div ( k × r) = 0.
C) grad ( k . r) = 2k
D) curl ( k × r) = 0
E) curl ( k × r) = 0.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
38
Use Green's Theorem to evaluate the line integral <strong>Use Green's Theorem to evaluate the line integral   counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).</strong> A) 18 B) 180 C) -36 D) 0 E) 36 counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).

A) 18
B) 180
C) -36
D) 0
E) 36
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
39
Evaluate the integral <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 ( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 ) - 2y) dx + (3x - ysin( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).

A) 5
B) 20
C) 0
D) 10
E) 2
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
40
Use Green's Theorem to compute <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 + xy) dx + ( <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).

A) -9
B) -12
C) 2
D) 0
E) 12
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
41
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   clockwise around the circle of radius 3 centred at the origin.</strong> A) 18   \pi  B) 9   \pi  C) 127   \pi  D) 243   \pi  E) 0  clockwise around the circle of radius 3 centred at the origin.

A) 18 π\pi
B) 9 π\pi
C) 127 π\pi
D) 243 π\pi
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
42
Use Green's Theorem to compute the integral <strong>Use Green's Theorem to compute the integral   counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).</strong> A) -198 B) -210 C) -126 D) -72 E) -21 counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).

A) -198
B) -210
C) -126
D) -72
E) -21
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
43
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.</strong> A) 3 B) 2 C) 1 D) 0 E)   \pi   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.

A) 3
B) 2
C) 1
D) 0
E) π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
44
Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   . In terms of these quantities, evaluate the line integral <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   .

A) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
B) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
C) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
D) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
E) -A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the integral <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 - <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 dx counterclockwise around the closed curve formed by y = x3 and y = x, between the points (0, 0) and (1, 1).

A) 1
B) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
C) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
D) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
46
Evaluate <strong>Evaluate   clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).</strong> A) 27 B) 9 C) -9 D) -27 E) 0 clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).

A) 27
B) 9
C) -9
D) -27
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
47
Let F = -  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   i +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   j and let C be the boundary of circle  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi

A) 9 π\pi
B) 0
C) -2 π\pi
D) 2 π\pi
E) 3 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
48
Find the flux of F = x i + 2y j out of the circular disk of radius 2 centred at (3, -5).

A) 8 π\pi
B) 12 π\pi
C) 16 π\pi
D) 24 π\pi
E) 4 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
49
If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 (ii) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 dx + 3xy dy

A) (i) 36 (ii) 15
B) (i) -36 (ii) 18
C) (i) -18 (ii) 36
D) (i) -4 (ii) 2
E) (i) 432 (ii) 1080
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
50
Find the flux of F = 2  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24  y i +  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24   <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24  j out of the rectangle 0 \le x \le ln(3), 0 \le y \le 2.

A) 4
B) 8
C) 16
D) 32
E) 24
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
51
Find the flux of F =  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  out of (a) the disk  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  +  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  \le  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.

A) (a) 0         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 0
B) (a) 2 π\pi         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
C) (a) 2 π\pi a         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
D) (a) 0         ~~~~~~~~ (b) 2 π\pi         ~~~~~~~~ (c) 0
E) None of the above
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
52
Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A = Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy). Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy). dx + x dy).
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
53
Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .

A) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
B) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
C) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
D) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
E) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
54
Use a line integral to find the area enclosed by the x-axis and one arch of the cycloid given parametrically by the equations x(t) = 3(t - sin(t)), y(t) =3(1 - cos(t)), 0 \le t \le 2 π\pi .

A) 36 π\pi
B) 18 π\pi
C) 27 π\pi
D) 54 π\pi
E) 9 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
55
Find the flux of F = x i + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   j + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   k out of the cube bounded by the coordinate planes and the planes <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   and <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)

A) 0
B) 1
C) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)
D) 3
E) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   F = x  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   y i + xz j + z  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   .

A) 32 π\pi
B) 34 π\pi
C) 36 π\pi
D) 38 π\pi
E) 72 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
57
Evaluate the integral  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   where R is the region  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   \le 25 and  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi

A) 12500 π\pi
B) 2500 π\pi
C) 6250 π\pi
D) 1250 π\pi
E) 25000 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
58
Use the Divergence Theorem to find the outward flux of F =  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi   across the boundary of the region  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi

A) 12 π\pi
B) 16 π\pi
C) 3 π\pi
D) π\pi
E) 60 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
59
Find the flux of r = x i + y j + z k out of the cone with base  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi   +  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi   \le 16, z = 0, and vertex at (0, 0, 3).

A) 46 π\pi
B) 48 π\pi
C) 50 π\pi
D) 52 π\pi
E) 16 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
60
Calculate the surface integral  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi   with outward normal.

A) 32 π\pi
B) 16 π\pi
C) 8 π\pi
D) 64 π\pi
E) 256 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
61
Find the flux of <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 i - xy j +3z k out of the solid region bounded by the parabolic cylinder <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 and the planes <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 , and <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176

A) 208
B) 112
C) 64
D) 48
E) 176
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)

A)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
B) π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
C)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
D) 2 π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
E)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
63
Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.

A) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
B) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
C) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
D) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
E) 3 Ah
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate the surface integral <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 where <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 is the unit inner normal to the surface S of the region lying between the two paraboloids <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1

A) <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1
B) 1
C) 0
D) 2
E) -1
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
65
Find the flux of G = (x <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   + 2zy) i + (y <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   - <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   ) j + <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   z k outward through the sphere <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)

A) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
B) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
C) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
D) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
E) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
66
Use the Divergence Theorem to evaluate the surface integral <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   where S is the part of the cone <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   below z = 2, and <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)

A) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
B) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
C) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
D) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
E) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
67
If F = x i + y j, calculate the flux of F upward through the part of the surface z = 4 - x2 - y2 that lies above the (x, y) plane by applying the Divergence Theorem to the volume bounded by the surface and the disk that it cuts out of the (x, y) plane.

A) 14 π\pi
B) 16 π\pi
C) 18 π\pi
D) 20 π\pi
E) 8 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
68
Find the outward flux of F = ln(  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   ) i -  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   j + z  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   k across the boundary of the region  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi

A) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi - 3 π\pi ln 2 + 2 π\pi
B) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi - 3 π\pi ln 2 - 2 π\pi
C) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi + 3 π\pi ln 2 - 2 π\pi
D) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi + 3 π\pi ln 2 + 2 π\pi
E) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi ln 2 - 2 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
69
A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of <strong>A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of   out of R across its boundary.</strong> A) 60 B) 50 C) 20 D) 15 E) 90 out of R across its boundary.

A) 60
B) 50
C) 20
D) 15
E) 90
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
70
Find  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   , where F(x, y, z) = x  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   y i +  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   ln x j - z  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   y k, S is the sphere of radius 3 centred at the origin, and  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   is the unit outward normal field on S.

A) 24 π\pi
B) 12 π\pi
C) 36 π\pi
D) 72 π\pi
E) 54 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
71
Given F = 4y i + x j + 2z k, find  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  over the hemisphere  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  with outward normal  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  .

A) 2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
B) -2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
C) -3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
D) 3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate the integral of <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 over the portion of the ellipse <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 in the first quadrant, traversed in the counterclockwise direction.

A) -31
B) -32
C) -33
D) -34
E) -30
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
73
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.</strong> A) 0 B) 1 C) -1 D) 2 E) -2 where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.

A) 0
B) 1
C) -1
D) 2
E) -2
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
74
Let F be a smooth vector field in 3-space satisfying the condition  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above  Find the flux of curl F upward through the part of the  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above  lying above the xy-plane.

A) 81 π\pi
B) 72 π\pi
C) 27 π\pi
D) 18 π\pi
E) None of the above
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
75
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)    where C is the circle given by the parametric equations  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)    for  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)

A) -  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)
B) - π\pi
C) π\pi
D) 2 π\pi
E)  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi   where C is the circle  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi   oriented clockwise as seen from high on the z-axis.

A) 40 π\pi
B) 45 π\pi
C) 50 π\pi
D) 55 π\pi
E) 35 π\pi
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   , where F = y i + zx j + <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   k and C are the positively oriented boundary of the triangle in which the plane <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   with upward normal, intersects the first octant of space.

A) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
B) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
C) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
D) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
E) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
78
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 by the three coordinate planes. C has orientation inherited from the upward normal on P.

A) 18
B) -6
C) 6
D) 24
E) -24
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
79
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.</strong> A) 0 B) 1 C) 2 D) -2 E) -1 where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.

A) 0
B) 1
C) 2
D) -2
E) -1
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
80
Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0  with the plane  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0  The orientation of the curve is consistent with the upward normal on the plane.

A) 8 π\pi
B) 6 π\pi
C) 4 π\pi
D) 2 π\pi
E) 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 92 flashcards in this deck.