Deck 13: Appendices

Full screen (f)
exit full mode
Question
Use synthetic division to find the quotient.

- 3x321x2+28x+10x5\frac{3 x^{3}-21 x^{2}+28 x+10}{x-5}

A) 3x2+5x2-3 x^{2}+5 x-2
B) 3x26x23 x^{2}-6 x-2
C) 3x63 x-6
D) 35x2+215x+285\frac{3}{5} x^{2}+-\frac{21}{5} x+\frac{28}{5}
Use Space or
up arrow
down arrow
to flip the card.
Question
Use synthetic division to find the quotient.

- x4+7x3+13x2+17x+10x+5\frac{x^{4}+7 x^{3}+13 x^{2}+17 x+10}{x+5}

A) x3+2x2+6xx^{3}+2 x^{2}+6 x
B) x3+2x2+6x+4x^{3}+2 x^{2}+6 x+4
C) x3+3x2+3x2x^{3}+3 x^{2}+3 x-2
D) x3+2x2+3x+2x^{3}+2 x^{2}+3 x+2
Question
Use synthetic division to find the quotient.

- x5+7x4+7x312x2+18x+17x+5\frac{x^{5}+7 x^{4}+7 x^{3}-12 x^{2}+18 x+17}{x+5}

A) x4+2x33x2+3x+2x^{4}+2 x^{3}-3 x^{2}+3 x+2
B) x4+2x33x2+3x+3+2x+5x^{4}+2 x^{3}-3 x^{2}+3 x+3+\frac{2}{x+5}
C) x3+2x23x+3+2x+5x^{3}+2 x^{2}-3 x+3+\frac{2}{x+5}
D) x4+2x33x2+3x3+4x+5x^{4}+2 x^{3}-3 x^{2}+3 x-3+\frac{4}{x+5}
Question
Use synthetic division to find the quotient.

- x3+73x273x1x+13\frac{x^{3}+\frac{7}{3} x^{2}-\frac{7}{3} x-1}{x+\frac{1}{3}}

A) x2+2x6x^{2}+2 x-6
B) x2133x+13x+1x^{2}-\frac{13}{3} x+\frac{-13}{x+1}
C) x2+2x3x^{2}+2 x-3
D) x2133x+1491627x^{2}-\frac{13}{3} x+\frac{14}{9}-\frac{16}{27}
Question
Use synthetic division to find the quotient.

- x51x1\frac{x^{5}-1}{x-1}

A) x4+x3+x2+x+1+1x1x^{4}+x^{3}+x^{2}+x+1+\frac{1}{x-1}
B) x4+x3+x2+x+1x^{4}+x^{3}+x^{2}+x+1
C) x5+x4+x3+x2+x+1x^{5}+x^{4}+x^{3}+x^{2}+x+1
D) x5+x4+x3+x2+x+1+1x1x^{5}+x^{4}+x^{3}+x^{2}+x+1+\frac{1}{x-1}
Question
Use synthetic division to find the quotient.

- (6x3+2x2+5x10)÷(x2)\left(-6 x^{3}+2 x^{2}+5 x-10\right) \div(x-2)

A) 6x210x15+40x2-6 x^{2}-10 x-15+\frac{-40}{x-2}
B) 6x210x5+10x2-6 x^{2}-10 x-5+\frac{-10}{x-2}
C) 6x210x25+40x2-6 x^{2}-10 x-25+\frac{-40}{x-2}
D) 6x210x15+25x2-6 x^{2}-10 x-15+\frac{-25}{x-2}
Question
Use synthetic division to find the quotient.

- (x4+256)÷(x4)\left(x^{4}+256\right) \div(x-4)

A) x3+4x2+16x+64x^{3}+4 x^{2}+16 x+64
B) x34x2+16x64+512x4x^{3}-4 x^{2}+16 x-64+\frac{512}{x-4}
C) x3+4x2+16x+64+512x4x^{3}+4 x^{2}+16 x+64+\frac{512}{x-4}
D) x3+4x2+16x+64+256x4x^{3}+4 x^{2}+16 x+64+\frac{256}{x-4}
Question
Use synthetic division to find the quotient.

- (2x3+x23x+2)÷(x+3)\left(2 x^{3}+x^{2}-3 x+2\right) \div(x+3)

A) 2x25x12+34x+32 x^{2}-5 x-12+\frac{-34}{x+3}
B) 2x25x+122 x^{2}-5 x+12
C) 2x25x+12+34x+32 x^{2}-5 x+12+\frac{-34}{x+3}
D) 2x25x122 x^{2}-5 x-12
Question
Use synthetic division to find the quotient.

- (3x42x310x2+15)÷(x2)\left(3 x^{4}-2 x^{3}-10 x^{2}+15\right) \div(x-2)

A) 3x3+4x2x3+1x23 x^{3}+4 x^{2}-x-3+\frac{1}{x-2}
B) 3x3+4x22x4+7x23 x^{3}+4 x^{2}-2 x-4+\frac{7}{x-2}
C) 3x3+4x22x4+11x23 x^{3}+4 x^{2}-2 x-4+\frac{-11}{x-2}
D) 3x3+4x22x+4+8x23 x^{3}+4 x^{2}-2 x+4+\frac{-8}{x-2}
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=3x35x25x+8k=-2 ; P(x)=3 x^{3}-5 x^{2}-5 x+8

A) -26
B) -46
C) -22
D) -20
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=6x4+6x3+4x23x+24k=-2 ; P(x)=6 x^{4}+6 x^{3}+4 x^{2}-3 x+24

A) 98
B) 94
C) 100
D) -98
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=3;P(x)=x23x5k=3 ; P(x)=x^{2}-3 x-5

A) 5
B) -23
C) -5
D) -13
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=3;P(x)=x3+2x22\mathrm{k}=-3 ; \mathrm{P}(\mathrm{x})=-\mathrm{x}^{3}+2 \mathrm{x}^{2}-2

A) 43
B) -6
C) -46
D) -43
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=5;P(x)=x3+3x2+4x+5k=-5 ; P(x)=x^{3}+3 x^{2}+4 x+5

A) 180
B) -75
C) 185
D) -65
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=3x5+5x3+3x22k=2 ; P(x)=3 x^{5}+5 x^{3}+3 x^{2}-2

A) 146
B) 147
C) -122
D) -126
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=x6+2x5+2x4+3x33x24x6k=-2 ; P(x)=x^{6}+2 x^{5}+2 x^{4}+3 x^{3}-3 x^{2}-4 x-6

A) -1
B) 2
C) -2
D) 158
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=12;P(x)=8x3+16x28x\mathrm{k}=\frac{1}{2} ; \mathrm{P}(\mathrm{x})=-8 \mathrm{x}^{3}+16 \mathrm{x}^{2}-8 \mathrm{x}

A) 2
B) -2
C) -1
D) 0
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2+i;P(x)=x3+11\mathrm{k}=2+\mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+11

A) 13+12i13+12 i
B) 13+11i13+11 \mathrm{i}
C) 2+11i2+11 \mathrm{i}
D) 2+12i2+12 \mathrm{i}
Question
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=42i;P(x)=x22x+4\mathrm{k}=4-2 \mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+4

A) 812i8-12 \mathrm{i}
B) -4
C) 84i8-4 \mathrm{i}
D) 44i4-4 \mathrm{i}
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- 3x3+5x2+x+33;x=3-3 x^{3}+5 x^{2}+x+33 ; x=3
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- 7x3+x2+3x1;x=2-7 x^{3}+x^{2}+3 x-1 ; x=2
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x47x2+6;x=1x^{4}-7 x^{2}+6 ; x=1
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x43x2x+2;x=2-x^{4}-3 x^{2}-x+2 ; x=2
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- 3x446x3+2x+1;x=133 x^{4}-46 x^{3}+2 x+1 ; x=\frac{1}{3}
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- 5x44x2+4;x=255 x^{4}-4 x^{2}+4 ; x=\frac{2}{5}
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x2+10x+34;x=5+3ix^{2}+10 x+34 ; x=-5+3 i
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x26x+25;x=34ix^{2}-6 x+25 ; x=-3-4 i
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x3+5x2+9x+45;x=3ix^{3}+5 x^{2}+9 x+45 ; x=3 i
Question
Use synthetic division to decide whether the given number is a solution of the given equation.

- x3+7x216x+18;x=2+ix^{3}+7 x^{2}-16 x+18 ; x=2+i
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/29
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Appendices
1
Use synthetic division to find the quotient.

- 3x321x2+28x+10x5\frac{3 x^{3}-21 x^{2}+28 x+10}{x-5}

A) 3x2+5x2-3 x^{2}+5 x-2
B) 3x26x23 x^{2}-6 x-2
C) 3x63 x-6
D) 35x2+215x+285\frac{3}{5} x^{2}+-\frac{21}{5} x+\frac{28}{5}
3x26x23 x^{2}-6 x-2
2
Use synthetic division to find the quotient.

- x4+7x3+13x2+17x+10x+5\frac{x^{4}+7 x^{3}+13 x^{2}+17 x+10}{x+5}

A) x3+2x2+6xx^{3}+2 x^{2}+6 x
B) x3+2x2+6x+4x^{3}+2 x^{2}+6 x+4
C) x3+3x2+3x2x^{3}+3 x^{2}+3 x-2
D) x3+2x2+3x+2x^{3}+2 x^{2}+3 x+2
x3+2x2+3x+2x^{3}+2 x^{2}+3 x+2
3
Use synthetic division to find the quotient.

- x5+7x4+7x312x2+18x+17x+5\frac{x^{5}+7 x^{4}+7 x^{3}-12 x^{2}+18 x+17}{x+5}

A) x4+2x33x2+3x+2x^{4}+2 x^{3}-3 x^{2}+3 x+2
B) x4+2x33x2+3x+3+2x+5x^{4}+2 x^{3}-3 x^{2}+3 x+3+\frac{2}{x+5}
C) x3+2x23x+3+2x+5x^{3}+2 x^{2}-3 x+3+\frac{2}{x+5}
D) x4+2x33x2+3x3+4x+5x^{4}+2 x^{3}-3 x^{2}+3 x-3+\frac{4}{x+5}
x4+2x33x2+3x+3+2x+5x^{4}+2 x^{3}-3 x^{2}+3 x+3+\frac{2}{x+5}
4
Use synthetic division to find the quotient.

- x3+73x273x1x+13\frac{x^{3}+\frac{7}{3} x^{2}-\frac{7}{3} x-1}{x+\frac{1}{3}}

A) x2+2x6x^{2}+2 x-6
B) x2133x+13x+1x^{2}-\frac{13}{3} x+\frac{-13}{x+1}
C) x2+2x3x^{2}+2 x-3
D) x2133x+1491627x^{2}-\frac{13}{3} x+\frac{14}{9}-\frac{16}{27}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
5
Use synthetic division to find the quotient.

- x51x1\frac{x^{5}-1}{x-1}

A) x4+x3+x2+x+1+1x1x^{4}+x^{3}+x^{2}+x+1+\frac{1}{x-1}
B) x4+x3+x2+x+1x^{4}+x^{3}+x^{2}+x+1
C) x5+x4+x3+x2+x+1x^{5}+x^{4}+x^{3}+x^{2}+x+1
D) x5+x4+x3+x2+x+1+1x1x^{5}+x^{4}+x^{3}+x^{2}+x+1+\frac{1}{x-1}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
6
Use synthetic division to find the quotient.

- (6x3+2x2+5x10)÷(x2)\left(-6 x^{3}+2 x^{2}+5 x-10\right) \div(x-2)

A) 6x210x15+40x2-6 x^{2}-10 x-15+\frac{-40}{x-2}
B) 6x210x5+10x2-6 x^{2}-10 x-5+\frac{-10}{x-2}
C) 6x210x25+40x2-6 x^{2}-10 x-25+\frac{-40}{x-2}
D) 6x210x15+25x2-6 x^{2}-10 x-15+\frac{-25}{x-2}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
7
Use synthetic division to find the quotient.

- (x4+256)÷(x4)\left(x^{4}+256\right) \div(x-4)

A) x3+4x2+16x+64x^{3}+4 x^{2}+16 x+64
B) x34x2+16x64+512x4x^{3}-4 x^{2}+16 x-64+\frac{512}{x-4}
C) x3+4x2+16x+64+512x4x^{3}+4 x^{2}+16 x+64+\frac{512}{x-4}
D) x3+4x2+16x+64+256x4x^{3}+4 x^{2}+16 x+64+\frac{256}{x-4}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
8
Use synthetic division to find the quotient.

- (2x3+x23x+2)÷(x+3)\left(2 x^{3}+x^{2}-3 x+2\right) \div(x+3)

A) 2x25x12+34x+32 x^{2}-5 x-12+\frac{-34}{x+3}
B) 2x25x+122 x^{2}-5 x+12
C) 2x25x+12+34x+32 x^{2}-5 x+12+\frac{-34}{x+3}
D) 2x25x122 x^{2}-5 x-12
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
9
Use synthetic division to find the quotient.

- (3x42x310x2+15)÷(x2)\left(3 x^{4}-2 x^{3}-10 x^{2}+15\right) \div(x-2)

A) 3x3+4x2x3+1x23 x^{3}+4 x^{2}-x-3+\frac{1}{x-2}
B) 3x3+4x22x4+7x23 x^{3}+4 x^{2}-2 x-4+\frac{7}{x-2}
C) 3x3+4x22x4+11x23 x^{3}+4 x^{2}-2 x-4+\frac{-11}{x-2}
D) 3x3+4x22x+4+8x23 x^{3}+4 x^{2}-2 x+4+\frac{-8}{x-2}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
10
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=3x35x25x+8k=-2 ; P(x)=3 x^{3}-5 x^{2}-5 x+8

A) -26
B) -46
C) -22
D) -20
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
11
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=6x4+6x3+4x23x+24k=-2 ; P(x)=6 x^{4}+6 x^{3}+4 x^{2}-3 x+24

A) 98
B) 94
C) 100
D) -98
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
12
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=3;P(x)=x23x5k=3 ; P(x)=x^{2}-3 x-5

A) 5
B) -23
C) -5
D) -13
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
13
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=3;P(x)=x3+2x22\mathrm{k}=-3 ; \mathrm{P}(\mathrm{x})=-\mathrm{x}^{3}+2 \mathrm{x}^{2}-2

A) 43
B) -6
C) -46
D) -43
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
14
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=5;P(x)=x3+3x2+4x+5k=-5 ; P(x)=x^{3}+3 x^{2}+4 x+5

A) 180
B) -75
C) 185
D) -65
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
15
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=3x5+5x3+3x22k=2 ; P(x)=3 x^{5}+5 x^{3}+3 x^{2}-2

A) 146
B) 147
C) -122
D) -126
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
16
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2;P(x)=x6+2x5+2x4+3x33x24x6k=-2 ; P(x)=x^{6}+2 x^{5}+2 x^{4}+3 x^{3}-3 x^{2}-4 x-6

A) -1
B) 2
C) -2
D) 158
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
17
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=12;P(x)=8x3+16x28x\mathrm{k}=\frac{1}{2} ; \mathrm{P}(\mathrm{x})=-8 \mathrm{x}^{3}+16 \mathrm{x}^{2}-8 \mathrm{x}

A) 2
B) -2
C) -1
D) 0
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
18
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=2+i;P(x)=x3+11\mathrm{k}=2+\mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+11

A) 13+12i13+12 i
B) 13+11i13+11 \mathrm{i}
C) 2+11i2+11 \mathrm{i}
D) 2+12i2+12 \mathrm{i}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
19
Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) .

- k=42i;P(x)=x22x+4\mathrm{k}=4-2 \mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+4

A) 812i8-12 \mathrm{i}
B) -4
C) 84i8-4 \mathrm{i}
D) 44i4-4 \mathrm{i}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
20
Use synthetic division to decide whether the given number is a solution of the given equation.

- 3x3+5x2+x+33;x=3-3 x^{3}+5 x^{2}+x+33 ; x=3
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
21
Use synthetic division to decide whether the given number is a solution of the given equation.

- 7x3+x2+3x1;x=2-7 x^{3}+x^{2}+3 x-1 ; x=2
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
22
Use synthetic division to decide whether the given number is a solution of the given equation.

- x47x2+6;x=1x^{4}-7 x^{2}+6 ; x=1
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
23
Use synthetic division to decide whether the given number is a solution of the given equation.

- x43x2x+2;x=2-x^{4}-3 x^{2}-x+2 ; x=2
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
24
Use synthetic division to decide whether the given number is a solution of the given equation.

- 3x446x3+2x+1;x=133 x^{4}-46 x^{3}+2 x+1 ; x=\frac{1}{3}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
25
Use synthetic division to decide whether the given number is a solution of the given equation.

- 5x44x2+4;x=255 x^{4}-4 x^{2}+4 ; x=\frac{2}{5}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
26
Use synthetic division to decide whether the given number is a solution of the given equation.

- x2+10x+34;x=5+3ix^{2}+10 x+34 ; x=-5+3 i
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
27
Use synthetic division to decide whether the given number is a solution of the given equation.

- x26x+25;x=34ix^{2}-6 x+25 ; x=-3-4 i
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
28
Use synthetic division to decide whether the given number is a solution of the given equation.

- x3+5x2+9x+45;x=3ix^{3}+5 x^{2}+9 x+45 ; x=3 i
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
29
Use synthetic division to decide whether the given number is a solution of the given equation.

- x3+7x216x+18;x=2+ix^{3}+7 x^{2}-16 x+18 ; x=2+i
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 29 flashcards in this deck.