Exam 13: Appendices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use synthetic division to find the quotient. - x4+7x3+13x2+17x+10x+5\frac{x^{4}+7 x^{3}+13 x^{2}+17 x+10}{x+5}

Free
(Multiple Choice)
5.0/5
(37)
Correct Answer:
Verified

D

Use synthetic division to find the quotient. - 3x321x2+28x+10x5\frac{3 x^{3}-21 x^{2}+28 x+10}{x-5}

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

B

Use synthetic division to decide whether the given number is a solution of the given equation. - 3x3+5x2+x+33;x=3-3 x^{3}+5 x^{2}+x+33 ; x=3

Free
(True/False)
4.9/5
(36)
Correct Answer:
Verified

True

Use synthetic division to decide whether the given number is a solution of the given equation. - x43x2x+2;x=2-x^{4}-3 x^{2}-x+2 ; x=2

(True/False)
4.9/5
(36)

Use synthetic division to find the quotient. - x51x1\frac{x^{5}-1}{x-1}

(Multiple Choice)
4.9/5
(29)

Use synthetic division to decide whether the given number is a solution of the given equation. - 5x44x2+4;x=255 x^{4}-4 x^{2}+4 ; x=\frac{2}{5}

(True/False)
4.9/5
(34)

Use synthetic division to decide whether the given number is a solution of the given equation. - x2+10x+34;x=5+3ix^{2}+10 x+34 ; x=-5+3 i

(True/False)
4.8/5
(39)

Use synthetic division to decide whether the given number is a solution of the given equation. - x3+5x2+9x+45;x=3ix^{3}+5 x^{2}+9 x+45 ; x=3 i

(True/False)
4.8/5
(39)

Use synthetic division to decide whether the given number is a solution of the given equation. - 3x446x3+2x+1;x=133 x^{4}-46 x^{3}+2 x+1 ; x=\frac{1}{3}

(True/False)
4.8/5
(31)

Use synthetic division to find the quotient. - (3x42x310x2+15)÷(x2)\left(3 x^{4}-2 x^{3}-10 x^{2}+15\right) \div(x-2)

(Multiple Choice)
4.8/5
(31)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=2;P(x)=3x35x25x+8k=-2 ; P(x)=3 x^{3}-5 x^{2}-5 x+8

(Multiple Choice)
4.7/5
(30)

Use synthetic division to find the quotient. - x5+7x4+7x312x2+18x+17x+5\frac{x^{5}+7 x^{4}+7 x^{3}-12 x^{2}+18 x+17}{x+5}

(Multiple Choice)
4.9/5
(36)

Use synthetic division to find the quotient. - (2x3+x23x+2)÷(x+3)\left(2 x^{3}+x^{2}-3 x+2\right) \div(x+3)

(Multiple Choice)
4.8/5
(43)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=2+i;P(x)=x3+11\mathrm{k}=2+\mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+11

(Multiple Choice)
4.9/5
(29)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=2;P(x)=3x5+5x3+3x22k=2 ; P(x)=3 x^{5}+5 x^{3}+3 x^{2}-2

(Multiple Choice)
4.7/5
(44)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=2;P(x)=6x4+6x3+4x23x+24k=-2 ; P(x)=6 x^{4}+6 x^{3}+4 x^{2}-3 x+24

(Multiple Choice)
5.0/5
(37)

Use synthetic division to decide whether the given number is a solution of the given equation. - x26x+25;x=34ix^{2}-6 x+25 ; x=-3-4 i

(True/False)
4.8/5
(36)

Use synthetic division to decide whether the given number is a solution of the given equation. - x47x2+6;x=1x^{4}-7 x^{2}+6 ; x=1

(True/False)
4.8/5
(31)

Use synthetic division to find the quotient. - x3+73x273x1x+13\frac{x^{3}+\frac{7}{3} x^{2}-\frac{7}{3} x-1}{x+\frac{1}{3}}

(Multiple Choice)
4.9/5
(32)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=5;P(x)=x3+3x2+4x+5k=-5 ; P(x)=x^{3}+3 x^{2}+4 x+5

(Multiple Choice)
4.8/5
(28)
Showing 1 - 20 of 29
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)