Deck 5: Power Flows

Full screen (f)
exit full mode
Question
Using Gauss elimination, solve the following linear algebraic equations:
5x12x23x3=45x1+7x22x3=103x13x2+8x3=6\begin{aligned}5 x_{1}-2 x_{2}-3 x_{3} & =4 \\-5 x_{1}+7 x_{2}-2 x_{3} & =-10 \\-3 x_{1}-3 x_{2}+8 x_{3} & =6\end{aligned}
Find the three unknowns x1,x2x_{1}, x_{2} , and x3x_{3} . Check your answers using Cramer's rule. Also check by using matrix solution of linear equations.
Use Space or
up arrow
down arrow
to flip the card.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/1
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Power Flows
Using Gauss elimination, solve the following linear algebraic equations:
5x12x23x3=45x1+7x22x3=103x13x2+8x3=6\begin{aligned}5 x_{1}-2 x_{2}-3 x_{3} & =4 \\-5 x_{1}+7 x_{2}-2 x_{3} & =-10 \\-3 x_{1}-3 x_{2}+8 x_{3} & =6\end{aligned}
Find the three unknowns x1,x2x_{1}, x_{2} , and x3x_{3} . Check your answers using Cramer's rule. Also check by using matrix solution of linear equations.
[523572338][x1x2x3]=[4106]\left[\begin{array}{ccc}5 & -2 & -3 \\-5 & 7 & -2 \\-3 & -3 & 8\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-10 \\6\end{array}\right]
There are N1=2N-1=2 Gauss elimination steps.
During step 1, subtract A21/A11=5/5=1A_{21} / A_{11}=-5 / 5=-1 times Eq. 1 from Eq. 2, and subtract A31/A11=3/5A_{31} / A_{11}=-3 / 5 times Eq. 1 from Eq. 3.
[5230550215315][x1x2x3]=[46425]\left[\begin{array}{ccc}5 & -2 & -3 \\0 & 5 & -5 \\0 & -\frac{21}{5} & \frac{31}{5}\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-6 \\\frac{42}{5}\end{array}\right]
which is A(1)X=y(1)A^{(1)} X=y^{(1)}
During step 2, subtract A32(1)/A22(1)=21/55=2125A_{32}^{(1)} / A_{22}^{(1)}=\frac{-21 / 5}{5}=-\frac{21}{25} times Eq. 2 from Eq. 3.
[523055002][x1x2x3]=[468425]\left[\begin{array}{ccc}5 & -2 & -3 \\0 & 5 & -5 \\0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-6 \\\frac{84}{25}\end{array}\right]
which is triangularized.
Via back substitution, x3=1.68;x2=0.48;x1=2x_{3}=1.68 ; \quad x_{2}=0.48 ; \quad x_{1}=2
By Cramer's rule,
Δ=523572338=50;Δ1=4231072638=100 (Expanding Δ1aboutthefirstcolumnΔ2=5435102368=24;Δ3=5245710336=84x1=Δ1Δ=2;x2=Δ2Δ=0.48;x3=Δ3Δ=1.68\begin{aligned}& \Delta=\left|\begin{array}{ccc}5 & -2 & -3 \\-5 & 7 & -2 \\-3 & -3 & 8\end{array}\right|=50 ; \quad \Delta_{1}=\left|\begin{array}{ccc}4 & -2 & -3 \\-10 & 7 & -2 \\6 & -3 & 8\end{array}\right|=100 \text { (Expanding } \Delta_{1} about the first column \\& \Delta_{2}=\left|\begin{array}{ccc}5 & 4 & -3 \\-5 & -10 & -2 \\-3 & 6 & 8\end{array}\right|=24 ; \quad \Delta_{3}=\left|\begin{array}{ccc}5 & -2 & 4 \\-5 & 7 & -10 \\-3 & -3 & 6\end{array}\right|=84 \\& x_{1}=\frac{\Delta_{1}}{\Delta}=2 ; \quad x_{2}=\frac{\Delta_{2}}{\Delta}=0.48 ; \quad x_{3}=\frac{\Delta_{3}}{\Delta}=1.68\end{aligned}
By matrix method
AX=Y;A1AX=A1Y;X=A1Y where A1=150[502525463125362125]x1=2;x2=0.48;x3=1.68\begin{aligned}& A X=Y ; \quad A^{-1} A X=A^{-1} Y ; \quad X=A^{-1} Y \text { where } A^{-1}=\frac{1}{50}\left[\begin{array}{ccc}50 & 25 & 25 \\46 & 31 & 25 \\36 & 21 & 25\end{array}\right] \\& x_{1}=2 ; \quad x_{2}=0.48 ; \quad x_{3}=1.68\end{aligned}
locked card icon
Unlock Deck
Unlock for access to all 1 flashcards in this deck.