Exam 5: Power Flows

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Using Gauss elimination, solve the following linear algebraic equations: 5-2-3 =4 -5+7-2 =-10 -3-3+8 =6 Find the three unknowns x1,x2x_{1}, x_{2} , and x3x_{3} . Check your answers using Cramer's rule. Also check by using matrix solution of linear equations.

Free
(Essay)
4.8/5
(29)
Correct Answer:
Verified

[523572338][x1x2x3]=[4106]\left[\begin{array}{ccc}5 & -2 & -3 \\-5 & 7 & -2 \\-3 & -3 & 8\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-10 \\6\end{array}\right]
There are N1=2N-1=2 Gauss elimination steps.
During step 1, subtract A21/A11=5/5=1A_{21} / A_{11}=-5 / 5=-1 times Eq. 1 from Eq. 2, and subtract A31/A11=3/5A_{31} / A_{11}=-3 / 5 times Eq. 1 from Eq. 3.
[5230550215315][x1x2x3]=[46425]\left[\begin{array}{ccc}5 & -2 & -3 \\0 & 5 & -5 \\0 & -\frac{21}{5} & \frac{31}{5}\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-6 \\\frac{42}{5}\end{array}\right]
which is A(1)X=y(1)A^{(1)} X=y^{(1)}
During step 2, subtract A32(1)/A22(1)=21/55=2125A_{32}^{(1)} / A_{22}^{(1)}=\frac{-21 / 5}{5}=-\frac{21}{25} times Eq. 2 from Eq. 3.
[523055002][x1x2x3]=[468425]\left[\begin{array}{ccc}5 & -2 & -3 \\0 & 5 & -5 \\0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\-6 \\\frac{84}{25}\end{array}\right]
which is triangularized.
Via back substitution, x3=1.68;x2=0.48;x1=2x_{3}=1.68 ; \quad x_{2}=0.48 ; \quad x_{1}=2
By Cramer's rule,
Δ=523572338=50;Δ1=4231072638=100 (Expanding Δ1aboutthefirstcolumnΔ2=5435102368=24;Δ3=5245710336=84x1=Δ1Δ=2;x2=Δ2Δ=0.48;x3=Δ3Δ=1.68\begin{aligned}& \Delta=\left|\begin{array}{ccc}5 & -2 & -3 \\-5 & 7 & -2 \\-3 & -3 & 8\end{array}\right|=50 ; \quad \Delta_{1}=\left|\begin{array}{ccc}4 & -2 & -3 \\-10 & 7 & -2 \\6 & -3 & 8\end{array}\right|=100 \text { (Expanding } \Delta_{1} about the first column \\& \Delta_{2}=\left|\begin{array}{ccc}5 & 4 & -3 \\-5 & -10 & -2 \\-3 & 6 & 8\end{array}\right|=24 ; \quad \Delta_{3}=\left|\begin{array}{ccc}5 & -2 & 4 \\-5 & 7 & -10 \\-3 & -3 & 6\end{array}\right|=84 \\& x_{1}=\frac{\Delta_{1}}{\Delta}=2 ; \quad x_{2}=\frac{\Delta_{2}}{\Delta}=0.48 ; \quad x_{3}=\frac{\Delta_{3}}{\Delta}=1.68\end{aligned}
By matrix method
AX=Y;A1AX=A1Y;X=A1Y where A1=150[502525463125362125]x1=2;x2=0.48;x3=1.68\begin{aligned}& A X=Y ; \quad A^{-1} A X=A^{-1} Y ; \quad X=A^{-1} Y \text { where } A^{-1}=\frac{1}{50}\left[\begin{array}{ccc}50 & 25 & 25 \\46 & 31 & 25 \\36 & 21 & 25\end{array}\right] \\& x_{1}=2 ; \quad x_{2}=0.48 ; \quad x_{3}=1.68\end{aligned}

close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)