Deck 10: Series

Full screen (f)
exit full mode
Question
Use the nth term test to investigate the series n=1n+1n+2\sum_{n=1}^{\infty} \frac{n+1}{n+2} .

A) The series converges.
B) limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
C) limnn+1n+2=0\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=0 , so the test fails to tell us anything about the series.
D) limnn+1n+2=1\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 , so the test fails to tell us anything about the series.
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .

A) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the series n=11n3/2=2\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}=2 .
B) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
C) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} diverges.
D) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the test fails to tell us anything about the series.
Question
Use the ratio test to investigate the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} .

A) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} diverges.
B) limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
C) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the ratio test fails to tell us anything about the series.
D) limn2nn!2n+1(n+1)!=limnn+12=\lim _{n \rightarrow \infty} \frac{\frac{2 n}{n !}}{\frac{2^{n+1}}{(n+1) !}}=\lim _{n \rightarrow \infty} \frac{n+1}{2}=\infty , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
Question
Investigate the alternating series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} .

A) The p- series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges absolutely.
B) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges conditionally.
C) The ratio test gives r=1\mathrm{r}=1 , so the series n=1(1)n+1n2\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}^{2}} diverges.
D) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} diverges.
Question
Find the interval of convergence of the power series n=1xnn\sum_{n=1}^{\infty} \frac{x^{n}}{n} .

A)  <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)  <div style=padding-top: 35px>
B) 1x<1-1 \leq x<1
C) 1x1-1 \leq x \leq 1
D) <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)  <div style=padding-top: 35px>
Question
Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .

A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots
B) n=0(3x)nn!=1+3x+9x22!+27x33!+\sum_{n=0}^{\infty} \frac{(3 \mathrm{x})^{n}}{n !}=1+3 \mathrm{x}+\frac{9 \mathrm{x}^{2}}{2 !}+\frac{27 \mathrm{x}^{3}}{3 !}+\ldots
C) n=0(3x)n(3n)!=1+3x3!+9x26!+27x39!+\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(3 n) !}=1+\frac{3 x}{3 !}+\frac{9 x^{2}}{6 !}+\frac{27 x^{3}}{9 !}+\ldots
D) n=03xnn!=3+3x+3x22!+3x33!+\sum_{n=0}^{\infty} \frac{3 x^{n}}{n !}=3+3 x+\frac{3 x^{2}}{2 !}+\frac{3 x^{3}}{3 !}+\ldots
Question
Find a Taylor series expansion for f(x)=sinx\mathrm{f}(\mathrm{x})=\sin \mathrm{x} with a=π\mathrm{a}=\pi .

A) n=0(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!+(xπ)55!+(xπ)77!+\sum_{n=0}^{\infty} \frac{(x-\pi)^{2 n+1}}{(2 n+1) !}=(x-\pi)+\frac{(x-\pi)^{3}}{3 !}+\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}+\ldots
B) n=0(1)n(xπ)2n+1(2n)!=1(xπ)22!+(xπ)44!(xπ)66!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}) !}=1-\frac{(\mathrm{x}-\pi)^{2}}{2 !}+\frac{(\mathrm{x}-\pi)^{4}}{4 !}-\frac{(\mathrm{x}-\pi)^{6}}{6 !}+\ldots
C) n=0(1)n(xπ)2n+1(2n+1)!=(xπ)(xπ)33!+(xπ)55!(xπ)77!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}+1) !}=(\mathrm{x}-\pi)-\frac{(\mathrm{x}-\pi)^{3}}{3 !}+\frac{(\mathrm{x}-\pi)^{5}}{5 !}-\frac{(\mathrm{x}-\pi)^{7}}{7 !}+\ldots
D) n=0(1)n+1(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!(xπ)55!+(xπ)77!\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n+1}}{(2 n+1) !}=-(x-\pi)+\frac{(x-\pi)^{3}}{3 !}-\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}-\ldots
Question
Use the first four non- zero terms of the Maclaurin series for f(x)=exf(x)=e^{x} to estimate e0.3e^{-0.3} .

A) .7405
B).7399
C) .7407
D).7402
Question
Find the Fourier series for the square wave (of period 2π2 \pi ) given by f(x)={1,πx<01,0xπ\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-1, & -\pi \leq \mathrm{x}<0 \\ 1, & 0 \leq \mathrm{x} \leq \pi\end{array}\right.

A) n=02πsin[(2n+1)x]2n+1=2π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
B) n=04πsin[(2n+1)x]2n+1=4π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
C) n=04πcos[(2n+1)x]2n+1=4π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
D) n=02πcos[(2n+1)x]2n+1=2π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
Question
For the problems below, determine whether each series converges or diverges.

- 1+18+127++1n3+1+\frac{1}{8}+\frac{1}{27}+\ldots+\frac{1}{n^{3}}+\ldots
Question
For the problems below, determine whether each series converges or diverges.

- n=11(3n1)2\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{2}}
Question
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n+4n5n\sum_{n=1}^{\infty} \frac{\mathrm{n}+4}{\mathrm{n} \cdot 5^{\mathrm{n}}}
Question
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n2n3+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}
Question
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=2(1)nsinnn2\sum_{n=2}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}
Question
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+1n3n3+1\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{n}^{3}}{\mathrm{n}^{3}+1}
Question
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+11n3\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\sqrt[3]{\mathrm{n}}}
Question
For the problems below, find the interval of convergences of each series.

- n=1(6x)n(3n)!\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{(3 n) !}
Question
For the problems below, find the interval of convergences of each series.

-18 n=1(1)n(x5)nn3\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}(\mathrm{x}-5)^{\mathrm{n}}}{\sqrt[3]{\mathrm{n}}}
Question
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=e2xf(x)=e^{2 x}
Question
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=sin3xf(x)=\sin 3 x
Question
Find a Maclaurin series expansion for f(x)=ex1xf(x)=\frac{e^{x}-1}{x} .
Question
Evaluate 01cosxdx\int_{0}^{1} \cos \sqrt{\mathrm{x}} \mathrm{dx} . (Use three non-zero terms.) Round to four significant digits.
Question
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=2x3,a=2f(x)=\frac{2}{x^{3}}, a=2
Question
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=cosx,a=π4f(x)=\cos x, a=\frac{\pi}{4}
Question
Calculate the value of e1.2\mathrm{e}^{1.2} using the first four non- zero terms of a Taylor series. Round to five significant digits.
Question
Find the Fourier series expansion of f(x)=3x,0x<2πf(x)=3 x, 0 \leq x<2 \pi . Write at least four terms.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/26
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Series
1
Use the nth term test to investigate the series n=1n+1n+2\sum_{n=1}^{\infty} \frac{n+1}{n+2} .

A) The series converges.
B) limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
C) limnn+1n+2=0\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=0 , so the test fails to tell us anything about the series.
D) limnn+1n+2=1\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 , so the test fails to tell us anything about the series.
limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
2
Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .

A) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the series n=11n3/2=2\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}=2 .
B) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
C) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} diverges.
D) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the test fails to tell us anything about the series.
The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
3
Use the ratio test to investigate the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} .

A) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} diverges.
B) limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
C) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the ratio test fails to tell us anything about the series.
D) limn2nn!2n+1(n+1)!=limnn+12=\lim _{n \rightarrow \infty} \frac{\frac{2 n}{n !}}{\frac{2^{n+1}}{(n+1) !}}=\lim _{n \rightarrow \infty} \frac{n+1}{2}=\infty , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
4
Investigate the alternating series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} .

A) The p- series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges absolutely.
B) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges conditionally.
C) The ratio test gives r=1\mathrm{r}=1 , so the series n=1(1)n+1n2\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}^{2}} diverges.
D) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} diverges.
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
5
Find the interval of convergence of the power series n=1xnn\sum_{n=1}^{\infty} \frac{x^{n}}{n} .

A)  <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)
B) 1x<1-1 \leq x<1
C) 1x1-1 \leq x \leq 1
D) <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
6
Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .

A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots
B) n=0(3x)nn!=1+3x+9x22!+27x33!+\sum_{n=0}^{\infty} \frac{(3 \mathrm{x})^{n}}{n !}=1+3 \mathrm{x}+\frac{9 \mathrm{x}^{2}}{2 !}+\frac{27 \mathrm{x}^{3}}{3 !}+\ldots
C) n=0(3x)n(3n)!=1+3x3!+9x26!+27x39!+\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(3 n) !}=1+\frac{3 x}{3 !}+\frac{9 x^{2}}{6 !}+\frac{27 x^{3}}{9 !}+\ldots
D) n=03xnn!=3+3x+3x22!+3x33!+\sum_{n=0}^{\infty} \frac{3 x^{n}}{n !}=3+3 x+\frac{3 x^{2}}{2 !}+\frac{3 x^{3}}{3 !}+\ldots
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
7
Find a Taylor series expansion for f(x)=sinx\mathrm{f}(\mathrm{x})=\sin \mathrm{x} with a=π\mathrm{a}=\pi .

A) n=0(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!+(xπ)55!+(xπ)77!+\sum_{n=0}^{\infty} \frac{(x-\pi)^{2 n+1}}{(2 n+1) !}=(x-\pi)+\frac{(x-\pi)^{3}}{3 !}+\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}+\ldots
B) n=0(1)n(xπ)2n+1(2n)!=1(xπ)22!+(xπ)44!(xπ)66!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}) !}=1-\frac{(\mathrm{x}-\pi)^{2}}{2 !}+\frac{(\mathrm{x}-\pi)^{4}}{4 !}-\frac{(\mathrm{x}-\pi)^{6}}{6 !}+\ldots
C) n=0(1)n(xπ)2n+1(2n+1)!=(xπ)(xπ)33!+(xπ)55!(xπ)77!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}+1) !}=(\mathrm{x}-\pi)-\frac{(\mathrm{x}-\pi)^{3}}{3 !}+\frac{(\mathrm{x}-\pi)^{5}}{5 !}-\frac{(\mathrm{x}-\pi)^{7}}{7 !}+\ldots
D) n=0(1)n+1(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!(xπ)55!+(xπ)77!\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n+1}}{(2 n+1) !}=-(x-\pi)+\frac{(x-\pi)^{3}}{3 !}-\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}-\ldots
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
8
Use the first four non- zero terms of the Maclaurin series for f(x)=exf(x)=e^{x} to estimate e0.3e^{-0.3} .

A) .7405
B).7399
C) .7407
D).7402
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
9
Find the Fourier series for the square wave (of period 2π2 \pi ) given by f(x)={1,πx<01,0xπ\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-1, & -\pi \leq \mathrm{x}<0 \\ 1, & 0 \leq \mathrm{x} \leq \pi\end{array}\right.

A) n=02πsin[(2n+1)x]2n+1=2π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
B) n=04πsin[(2n+1)x]2n+1=4π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
C) n=04πcos[(2n+1)x]2n+1=4π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
D) n=02πcos[(2n+1)x]2n+1=2π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
10
For the problems below, determine whether each series converges or diverges.

- 1+18+127++1n3+1+\frac{1}{8}+\frac{1}{27}+\ldots+\frac{1}{n^{3}}+\ldots
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
11
For the problems below, determine whether each series converges or diverges.

- n=11(3n1)2\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{2}}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
12
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n+4n5n\sum_{n=1}^{\infty} \frac{\mathrm{n}+4}{\mathrm{n} \cdot 5^{\mathrm{n}}}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
13
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n2n3+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
14
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=2(1)nsinnn2\sum_{n=2}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
15
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+1n3n3+1\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{n}^{3}}{\mathrm{n}^{3}+1}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
16
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+11n3\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\sqrt[3]{\mathrm{n}}}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
17
For the problems below, find the interval of convergences of each series.

- n=1(6x)n(3n)!\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{(3 n) !}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
18
For the problems below, find the interval of convergences of each series.

-18 n=1(1)n(x5)nn3\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}(\mathrm{x}-5)^{\mathrm{n}}}{\sqrt[3]{\mathrm{n}}}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
19
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=e2xf(x)=e^{2 x}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
20
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=sin3xf(x)=\sin 3 x
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
21
Find a Maclaurin series expansion for f(x)=ex1xf(x)=\frac{e^{x}-1}{x} .
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate 01cosxdx\int_{0}^{1} \cos \sqrt{\mathrm{x}} \mathrm{dx} . (Use three non-zero terms.) Round to four significant digits.
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
23
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=2x3,a=2f(x)=\frac{2}{x^{3}}, a=2
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
24
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=cosx,a=π4f(x)=\cos x, a=\frac{\pi}{4}
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
25
Calculate the value of e1.2\mathrm{e}^{1.2} using the first four non- zero terms of a Taylor series. Round to five significant digits.
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
26
Find the Fourier series expansion of f(x)=3x,0x<2πf(x)=3 x, 0 \leq x<2 \pi . Write at least four terms.
Unlock Deck
Unlock for access to all 26 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 26 flashcards in this deck.