Exam 10: Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a Maclaurin series expansion for f(x)=ex1xf(x)=\frac{e^{x}-1}{x} .

Free
(Essay)
4.8/5
(42)
Correct Answer:
Verified

f(x)=1+x2!+x23!+x34!+f(x)=1+\frac{x}{2 !}+\frac{x^{2}}{3 !}+\frac{x^{3}}{4 !}+\ldots

Find the Fourier series expansion of f(x)=3x,0x<2πf(x)=3 x, 0 \leq x<2 \pi . Write at least four terms.

Free
(Essay)
4.8/5
(37)
Correct Answer:
Verified

f(x)=3π6sinx3sin2x2sin3x32sin4x+f(x)=3 \pi-6 \sin x-3 \sin 2 x-2 \sin 3 x-\frac{3}{2} \sin 4 x+\ldots

For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges. - n=1n2n3+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}

Free
(Short Answer)
4.9/5
(37)
Correct Answer:
Verified

diverges by integral test

For the problems below, determine whether each series converges or diverges. - 1+18+127++1n3+1+\frac{1}{8}+\frac{1}{27}+\ldots+\frac{1}{n^{3}}+\ldots

(Short Answer)
4.9/5
(42)

Find the Fourier series for the square wave (of period 2π2 \pi ) given by f(x)={1,πx<01,0xπ\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-1, & -\pi \leq \mathrm{x}<0 \\ 1, & 0 \leq \mathrm{x} \leq \pi\end{array}\right.

(Multiple Choice)
4.7/5
(25)

For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges. - n=1n+4n5n\sum_{n=1}^{\infty} \frac{\mathrm{n}+4}{\mathrm{n} \cdot 5^{\mathrm{n}}}

(Short Answer)
4.9/5
(33)

Investigate the alternating series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} .

(Multiple Choice)
5.0/5
(34)

For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally. - n=1(1)n+11n3\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\sqrt[3]{\mathrm{n}}}

(Short Answer)
4.8/5
(29)

Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .

(Multiple Choice)
4.7/5
(41)

Use the first four non- zero terms of the Maclaurin series for f(x)=exf(x)=e^{x} to estimate e0.3e^{-0.3} .

(Multiple Choice)
4.9/5
(38)

For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms. - f(x)=sin3xf(x)=\sin 3 x

(Essay)
4.8/5
(40)

For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally. - n=1(1)n+1n3n3+1\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{n}^{3}}{\mathrm{n}^{3}+1}

(Short Answer)
4.7/5
(39)

For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms. - f(x)=e2xf(x)=e^{2 x}

(Essay)
4.9/5
(34)

Calculate the value of e1.2\mathrm{e}^{1.2} using the first four non- zero terms of a Taylor series. Round to five significant digits.

(Short Answer)
4.9/5
(36)

Find a Taylor series expansion for f(x)=sinx\mathrm{f}(\mathrm{x})=\sin \mathrm{x} with a=π\mathrm{a}=\pi .

(Multiple Choice)
4.7/5
(46)

For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms. - f(x)=cosx,a=π4f(x)=\cos x, a=\frac{\pi}{4}

(Essay)
4.9/5
(31)

Evaluate 01cosxdx\int_{0}^{1} \cos \sqrt{\mathrm{x}} \mathrm{dx} . (Use three non-zero terms.) Round to four significant digits.

(Short Answer)
4.7/5
(36)

For the problems below, find the interval of convergences of each series. - n=1(6x)n(3n)!\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{(3 n) !}

(Essay)
4.9/5
(33)

For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally. - n=2(1)nsinnn2\sum_{n=2}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}

(Short Answer)
4.8/5
(29)

Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 26
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)