Deck 18: Statistical Applications in Quality Management

Full screen (f)
exit full mode
Question
The purpose of a control chart is to eliminate common cause variation.
Use Space or
up arrow
down arrow
to flip the card.
Question
Which of the following is NOT part of the Shewhart-Deming cycle?

A) Plan
B) Act
C) Do
D) React
Question
Special or assignable causes of variation are signalled by individual fluctuations or patterns in the data.
Question
Maintaining the gains that have been made with a revised process in the long term by avoiding potential problems that can occur when a process is changed involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Question
Common causes of variation are correctable without modifying the system.
Question
Common causes of variation represent variation due to the inherent variability in the system.
Question
Changes in the system to reduce common cause variation are the responsibility of management.
Question
Which of the following is NOT one of Deming's 14 points?

A) Create constancy of purpose for improvement of product or service
B) Belief in mass inspection
C) Drive out fear
D) Adopt and institute leadership
Question
In Australia,control limits on a control chart are placed so that they are three standard deviations above and below a central line.
Question
Developing operational definitions for each critical-to-quality characteristic involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Question
Which of the following is NOT part of the DMAIC process in Six Sigma management?

A) Do
B) Analyse
C) Control
D) Define
Question
The control chart _______.

A) focuses on the time dimension of a system
B) can be used for categorical, discrete, or continuous variables
C) captures the natural variability in the system
D) All of the above.
Question
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,it appears that the process is out of control.
Question
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,no opportunity appears to be present to render an improvement in the process.
Question
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,there appears to be a special cause of variation in the process.
Question
Which famous statistician developed the 14 points of management?

A) Chebyshev
B) Taguchi
C) Shewhart
D) Deming
Question
Determining the root causes of why defects can occur along with the variables in the process that cause these defects to occur involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Question
The Shewhart-Deming cycle plays an important role in which of the following 14 points for management?

A) Eliminate slogans, exhortation, and targets for the workforce.
B) Break down barriers between staff areas.
C) Create constancy of purpose for improvement of product and services.
D) Adopt the new philosophy.
Question
The control limits are based on the standard deviation of the process.
Question
Which of the following is NOT one of Deming's 14 points?

A) Break down barriers between staff areas
B) Drive out fear
C) Create constancy of purpose for improvement of product or service
D) Award business on the basis of price tag alone
Question
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the lower control limit for the p chart?

A) 0.37
B) 0.41
C) 0.50
D) 0.71
Question
Variation signalled by individual fluctuations or patterns in the data is called _______.

A) common or chance causes
B) special or assignable causes
C) the standard deviation
D) explained variation
Question
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,the c chart suggests that the special cause of variation must be incorporated into the process to become part of the permanent ongoing process.
Question
The control chart _______.

A) focuses on the time dimension of a system
B) captures the natural variability in the system
C) can be used for categorical, discrete, or continuous variables
D) All of the above.
Question
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the centre line for the p chart?

A) 0.926
B) 0.911
C) 0.885
D) 0.500
Question
_______ causes of variation are correctable without modifying the system.
Question
A process is said to be out of control if _______.

A) a point falls above the upper or below the lower control lines
B) eight or more consecutive points fall above the centre line or eight or more consecutive lines fall below the centre line
C) Either of the above.
D) None of the above.
Question
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,which expression best characterises the p chart?

A) Individual outliers
B) In control
C) Decreasing trend
D) Increasing trend
Question
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the upper control limit for the p chart?

A) 0.979
B) 0.961
C) 1.000
D) 0.926
Question
Which of the following situations suggests a process that appears to be operating out of statistical control?

A) A control chart in which several points fall outside the upper control limit.
B) A control chart in which points fall outside the lower control limit.
C) A control chart with a series of consecutive points that are above the centre line and a series of consecutive points that are below the centre line.
D) All of the above.
Question
The cause of variation that can be reduced only by changing the system is _______ cause variation.
Question
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the lower control limit for the p chart?

A) 0.815
B) 0.920
C) 0.911
D) 0.798
Question
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the centre line for the p chart?

A) 0.63
B) 0.66
C) 0.56
D) 0.53
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,the best estimate of the mean proportion of disks with bad sectors is _______.
Question
Which of the following situations suggests a process that appears to be operating in a state of statistical control?

A) A control chart with a series of consecutive points that are above the centre line and a series of consecutive points that are below the centre line.
B) A control chart in which no points fall outside either the upper control limit or the lower control limit and no patterns are present.
C) A control chart in which several points fall outside the upper control limit.
D) All of the above.
Question
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,which expression best characterises the p chart?

A) Increasing trend
B) In control
C) Cycles
D) Individual outliers
Question
The principal focus of the control chart is the attempt to separate special or assignable causes of variation from common causes of variation.What cause of variation can be reduced only by changing the system?

A) Total causes
B) Special or assignable causes
C) Common causes
D) None of the above.
Question
The p chart is a control chart used for monitoring the proportion of items in a batch that meet given specifications.
Question
Once the control limits are set for a control chart,one attempts to _______.

A) discern patterns that might exist in values over time
B) determine whether any points fall outside the control limits
C) Both of the above.
D) None of the above.
Question
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the upper control limit for the p chart?

A) 0.71
B) 0.62
C) 0.89
D) 0.92
Question
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The estimate of the standard error of the sample proportion is _______.
Question
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,construct a c chart for the number of defective items.
Question
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The centre line of this c chart is located at _______.
Question
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The lower control limits is _______.
Question
One of the morals of the red bead experiment is _______.

A) it is the system that primarily determines performance
B) variation is part of the process
C) only management can change the system
D) All of the above.
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.What are the lower and upper control limits for this R chart?

A) -2.28, 42.28
B) 0, 43.13
C) -2.33, 43.13
D) 0, 42.28
Question
The R chart is a control chart used to monitor a process mean.
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The upper control limit is _______,and the lower control limit is _______.
Question
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,construct a p control chart for these data.
Question
One of the morals of the red bead experiment is that variation is part of any process.
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The estimate of the standard error of the proportion of disks with bad sectors is _______.
Question
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,the estimate of the proportion of poor quality bags of candy is _______.
Question
It is not possible for the chart to be out of control when the R chart is in control.
Question
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The upper control limits is _______.
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The centre line of the control chart is _______.
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.What is the centre line of this R chart?

A) 20.40
B) 20.56
C) 20.00
D) 24.00
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,construct a p control chart for these data.
Question
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,the process seems to be _______.
Question
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The lower control limit is _______,while the upper control limit is _______.
Question
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The centre line for the chart should be located at _______.
Question
Instruction 18-9
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}

-Referring to Instruction 18-9,based on the chart,it appears that the process is in control.
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.This R chart is characterised by which of the following?

A) Decreasing trend
B) Increasing trend
C) In control
D) Individual outliers
Question
Instruction 18-8
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}

-Referring to Instruction 18-8,based on the R chart,it appears that the process is out of control.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.One way to obtain the control limits is to take the grand mean and add and subtract the product of A2 times the average of the sample ranges.For this data set,the value of A2 is _______.
Question
Instruction 18-9
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}

-Referring to Instruction 18-9,based on the R chart,it appears that the process is out of control.
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.What is the centre line of the chart?

A) 20.26
B) 20.00
C) 21.00
D) 24.26
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.Which expression best describes this chart?

A) Decreasing trend
B) Increasing trend
C) In control
D) Individual outliers
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the sample mean and range data were based on six observations per hour instead of five.How would this change affect the lower and upper control limits of an R chart?

A) Both LCL and UCL would remain the same.
B) LCL would remain the same; UCL would decrease.
C) LCL would increase; UCL would decrease.
D) LCL would decrease; UCL would increase.
Question
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.The centre line of this R chart is located at _______
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.One way to create the lower control limit involves multiplying the mean of the sample ranges by D3.For this data set,the value of D3 is _______.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The upper control limit for this data set is _______.
Question
Instruction 18-8
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}

-Referring to Instruction 18-8,based on the chart for the number of blemishes,it appears that the process is out of control.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The centre line of this R chart is located at _______.
Question
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.One way to create the lower control limit involves multiplying the mean of the sample ranges by D3.For this data set,the value of D3 is _______.
Question
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.What are the lower and upper control limits of this chart?

A) 10.00, 30.00
B) 8.49, 32.03
C) 4.96, 35.56
D) 5.39, 35.13
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.The lower control limit for this data set is _______,while the upper control limit is _______.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.One way to create the upper control limit involves multiplying the mean of the sample ranges by D4. For this data set,the value of D4 is _______.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.The centre line of this chart is located at _______.
Question
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The lower control limit for this data set is _______.
Question
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.One way to create the upper control limit involves multiplying the mean of the sample ranges by D4.For this data set,the value of D4 is _______.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/119
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 18: Statistical Applications in Quality Management
1
The purpose of a control chart is to eliminate common cause variation.
False
2
Which of the following is NOT part of the Shewhart-Deming cycle?

A) Plan
B) Act
C) Do
D) React
D
3
Special or assignable causes of variation are signalled by individual fluctuations or patterns in the data.
True
4
Maintaining the gains that have been made with a revised process in the long term by avoiding potential problems that can occur when a process is changed involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
5
Common causes of variation are correctable without modifying the system.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
6
Common causes of variation represent variation due to the inherent variability in the system.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
7
Changes in the system to reduce common cause variation are the responsibility of management.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
8
Which of the following is NOT one of Deming's 14 points?

A) Create constancy of purpose for improvement of product or service
B) Belief in mass inspection
C) Drive out fear
D) Adopt and institute leadership
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
9
In Australia,control limits on a control chart are placed so that they are three standard deviations above and below a central line.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
10
Developing operational definitions for each critical-to-quality characteristic involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
11
Which of the following is NOT part of the DMAIC process in Six Sigma management?

A) Do
B) Analyse
C) Control
D) Define
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
12
The control chart _______.

A) focuses on the time dimension of a system
B) can be used for categorical, discrete, or continuous variables
C) captures the natural variability in the system
D) All of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
13
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,it appears that the process is out of control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
14
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,no opportunity appears to be present to render an improvement in the process.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
15
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,based on the c chart,there appears to be a special cause of variation in the process.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
16
Which famous statistician developed the 14 points of management?

A) Chebyshev
B) Taguchi
C) Shewhart
D) Deming
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
17
Determining the root causes of why defects can occur along with the variables in the process that cause these defects to occur involves which part of the DMAIC process?

A) Define
B) Measure
C) Analyse
D) Improve
E) Control
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
18
The Shewhart-Deming cycle plays an important role in which of the following 14 points for management?

A) Eliminate slogans, exhortation, and targets for the workforce.
B) Break down barriers between staff areas.
C) Create constancy of purpose for improvement of product and services.
D) Adopt the new philosophy.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
19
The control limits are based on the standard deviation of the process.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
20
Which of the following is NOT one of Deming's 14 points?

A) Break down barriers between staff areas
B) Drive out fear
C) Create constancy of purpose for improvement of product or service
D) Award business on the basis of price tag alone
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
21
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the lower control limit for the p chart?

A) 0.37
B) 0.41
C) 0.50
D) 0.71
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
22
Variation signalled by individual fluctuations or patterns in the data is called _______.

A) common or chance causes
B) special or assignable causes
C) the standard deviation
D) explained variation
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
23
Instruction 18-1
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l |} \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-1,the c chart suggests that the special cause of variation must be incorporated into the process to become part of the permanent ongoing process.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
24
The control chart _______.

A) focuses on the time dimension of a system
B) captures the natural variability in the system
C) can be used for categorical, discrete, or continuous variables
D) All of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
25
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the centre line for the p chart?

A) 0.926
B) 0.911
C) 0.885
D) 0.500
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
26
_______ causes of variation are correctable without modifying the system.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
27
A process is said to be out of control if _______.

A) a point falls above the upper or below the lower control lines
B) eight or more consecutive points fall above the centre line or eight or more consecutive lines fall below the centre line
C) Either of the above.
D) None of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
28
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,which expression best characterises the p chart?

A) Individual outliers
B) In control
C) Decreasing trend
D) Increasing trend
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
29
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the upper control limit for the p chart?

A) 0.979
B) 0.961
C) 1.000
D) 0.926
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
30
Which of the following situations suggests a process that appears to be operating out of statistical control?

A) A control chart in which several points fall outside the upper control limit.
B) A control chart in which points fall outside the lower control limit.
C) A control chart with a series of consecutive points that are above the centre line and a series of consecutive points that are below the centre line.
D) All of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
31
The cause of variation that can be reduced only by changing the system is _______ cause variation.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
32
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,what is the numerical value of the lower control limit for the p chart?

A) 0.815
B) 0.920
C) 0.911
D) 0.798
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
33
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the centre line for the p chart?

A) 0.63
B) 0.66
C) 0.56
D) 0.53
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
34
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,the best estimate of the mean proportion of disks with bad sectors is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
35
Which of the following situations suggests a process that appears to be operating in a state of statistical control?

A) A control chart with a series of consecutive points that are above the centre line and a series of consecutive points that are below the centre line.
B) A control chart in which no points fall outside either the upper control limit or the lower control limit and no patterns are present.
C) A control chart in which several points fall outside the upper control limit.
D) All of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
36
Instruction 18-2
A local newspaper has 10 delivery boys who each deliver the morning paper to 50 customers every day. The owner decides to record the number of papers delivered on time for a 10-day period and construct a p chart to see whether the percentage is too erratic.
 Day  Number of  Papers Deliverd  on Time 1462453464455436487468499481047\begin{array} { | c | c | } \hline \text { Day } & \begin{array} { c } \text { Number of } \\\text { Papers Deliverd } \\\text { on Time }\end{array} \\\hline 1 & 46 \\\hline 2 & 45 \\\hline 3 & 46 \\\hline 4 & 45 \\\hline 5 & 43 \\\hline 6 & 48 \\\hline 7 & 46 \\\hline 8 & 49 \\\hline 9 & 48 \\\hline 10 & 47 \\\hline\end{array}

-Referring to Instruction 18-2,which expression best characterises the p chart?

A) Increasing trend
B) In control
C) Cycles
D) Individual outliers
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
37
The principal focus of the control chart is the attempt to separate special or assignable causes of variation from common causes of variation.What cause of variation can be reduced only by changing the system?

A) Total causes
B) Special or assignable causes
C) Common causes
D) None of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
38
The p chart is a control chart used for monitoring the proportion of items in a batch that meet given specifications.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
39
Once the control limits are set for a control chart,one attempts to _______.

A) discern patterns that might exist in values over time
B) determine whether any points fall outside the control limits
C) Both of the above.
D) None of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
40
Instruction 18-3
A political pollster randomly selects a sample of 100 voters each day for eight successive days and asks how many will vote for the incumbent. The pollster wishes to construct a p chart to see if the percentage favouring the incumbent candidate is too erratic.
 Sample  (Day)  Number Favouring  Incumbent Candidate 157257353451555660756859\begin{array} { | c | c | } \hline \begin{array} { c } \text { Sample } \\\text { (Day) }\end{array} & \begin{array} { c } \text { Number Favouring } \\\text { Incumbent Candidate }\end{array} \\\hline 1 & 57 \\\hline 2 & 57 \\\hline 3 & 53 \\\hline 4 & 51 \\\hline 5 & 55 \\\hline 6 & 60 \\\hline 7 & 56 \\\hline 8 & 59 \\\hline\end{array}

-Referring to Instruction 18-3,what is the numerical value of the upper control limit for the p chart?

A) 0.71
B) 0.62
C) 0.89
D) 0.92
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
41
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The estimate of the standard error of the sample proportion is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
42
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,construct a c chart for the number of defective items.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
43
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The centre line of this c chart is located at _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
44
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The lower control limits is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
45
One of the morals of the red bead experiment is _______.

A) it is the system that primarily determines performance
B) variation is part of the process
C) only management can change the system
D) All of the above.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
46
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.What are the lower and upper control limits for this R chart?

A) -2.28, 42.28
B) 0, 43.13
C) -2.33, 43.13
D) 0, 42.28
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
47
The R chart is a control chart used to monitor a process mean.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
48
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The upper control limit is _______,and the lower control limit is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
49
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,construct a p control chart for these data.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
50
One of the morals of the red bead experiment is that variation is part of any process.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
51
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The estimate of the standard error of the proportion of disks with bad sectors is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
52
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,the estimate of the proportion of poor quality bags of candy is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
53
It is not possible for the chart to be out of control when the R chart is in control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
54
Instruction 18-6
Below is the number of defective items from a production line over 20 consecutive morning shifts.
 Day  Nonconf.  Day  Nonconf. 12611222271226323132142114225261519620161773517218301818921191610252017\begin{array} { | l | l | l | l| } \hline \text { Day } & \text { Nonconf. } & \text { Day } & \text { Nonconf. } \\\hline 1 & 26 & 11 & 22 \\\hline 2 & 27 & 12 & 26 \\\hline 3 & 23 & 13 & 21 \\\hline 4 & 21 & 14 & 22 \\\hline 5 & 26 & 15 & 19 \\\hline 6 & 20 & 16 & 17 \\\hline 7 & 35 & 17 & 21 \\\hline 8 & 30 & 18 & 18 \\\hline 9 & 21 & 19 & 16 \\\hline 10 & 25 & 20 & 17\\\hline\end{array} Note: Nonconf. = Nonconformances

-Referring to Instruction 18-6,a c chart is to be constructed for the number of defective items.The upper control limits is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
55
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,a p control chart is to be made for these data.The centre line of the control chart is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
56
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.What is the centre line of this R chart?

A) 20.40
B) 20.56
C) 20.00
D) 24.00
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
57
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,construct a p control chart for these data.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
58
Instruction 18-4
A manufacturer of computer disks took samples of 240 disks on 15 consecutive days. The number of disks with bad sectors was determined for each of these samples. The results are in the table that follows.
 Day  Bad  % Bad 190.037500270.029167340.016667460.025000580.033333630.012500760.0250008100.0416679160.06666710240.10000011150.0625001290.0375001340.0166671480.0333331560.025000\begin{array} { l l l } \text { Day } & \text { Bad } & \text { \% Bad } \\1 & 9 & 0.037500 \\2 & 7 & 0.029167 \\3 & 4 & 0.016667 \\4 & 6 & 0.025000 \\5 & 8 & 0.033333 \\6 & 3 & 0.012500 \\7 & 6 & 0.025000 \\8 & 10 & 0.041667 \\9 & 16 & 0.066667 \\10 & 24 & 0.100000 \\11 & 15 & 0.062500 \\12 & 9 & 0.037500 \\13 & 4 & 0.016667 \\14 & 8 & 0.033333 \\15 & 6 & 0.025000\end{array}

-Referring to Instruction 18-4,the process seems to be _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
59
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The lower control limit is _______,while the upper control limit is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
60
Instruction 18-5
The maker of a packaged candy wants to evaluate the quality of her production process. On each of 16 consecutive days, she samples 600 bags of candy and determines the number in each day's sample that she considers to be of poor quality. The data that she developed follow.
 Day  Number  Poor  Proportion  Poor 1330.05500002290.04833333310.05166674320.05333335430.07166676450.07500007460.07666678480.08000009480.080000010460.076666711280.046666712320.053333313280.046666714320.053333315310.051666716240.0400000\begin{array} { | l | l | l | } \hline \text { Day } & \begin{array} { l } \text { Number } \\\text { Poor }\end{array} & \begin{array} { l } \text { Proportion } \\\text { Poor }\end{array} \\\hline 1 & 33 & 0.0550000 \\\hline 2 & 29 & 0.0483333 \\\hline 3 & 31 & 0.0516667 \\\hline 4 & 32 & 0.0533333 \\\hline 5 & 43 & 0.0716667 \\\hline 6 & 45 & 0.0750000 \\\hline 7 & 46 & 0.0766667 \\\hline 8 & 48 & 0.0800000 \\\hline 9 & 48 & 0.0800000 \\\hline 10 & 46 & 0.0766667 \\\hline 11 & 28 & 0.0466667 \\\hline 12 & 32 & 0.0533333 \\\hline 13 & 28 & 0.0466667 \\\hline 14 & 32 & 0.0533333 \\\hline 15 & 31 & 0.0516667 \\\hline 16 & 24 & 0.0400000 \\\hline\end{array}

-Referring to Instruction 18-5,a p control chart is to be constructed for these data.The centre line for the chart should be located at _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
61
Instruction 18-9
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}

-Referring to Instruction 18-9,based on the chart,it appears that the process is in control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
62
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the variability in collection times is in control.This R chart is characterised by which of the following?

A) Decreasing trend
B) Increasing trend
C) In control
D) Individual outliers
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
63
Instruction 18-8
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}

-Referring to Instruction 18-8,based on the R chart,it appears that the process is out of control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
64
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.One way to obtain the control limits is to take the grand mean and add and subtract the product of A2 times the average of the sample ranges.For this data set,the value of A2 is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
65
Instruction 18-9
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}

-Referring to Instruction 18-9,based on the R chart,it appears that the process is out of control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
66
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.What is the centre line of the chart?

A) 20.26
B) 20.00
C) 21.00
D) 24.26
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
67
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.Which expression best describes this chart?

A) Decreasing trend
B) Increasing trend
C) In control
D) Individual outliers
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
68
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the sample mean and range data were based on six observations per hour instead of five.How would this change affect the lower and upper control limits of an R chart?

A) Both LCL and UCL would remain the same.
B) LCL would remain the same; UCL would decrease.
C) LCL would increase; UCL would decrease.
D) LCL would decrease; UCL would increase.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
69
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.The centre line of this R chart is located at _______
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
70
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.One way to create the lower control limit involves multiplying the mean of the sample ranges by D3.For this data set,the value of D3 is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
71
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The upper control limit for this data set is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
72
Instruction 18-8
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}

-Referring to Instruction 18-8,based on the chart for the number of blemishes,it appears that the process is out of control.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
73
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The centre line of this R chart is located at _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
74
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.One way to create the lower control limit involves multiplying the mean of the sample ranges by D3.For this data set,the value of D3 is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
75
Instruction 18-7
A factory supervisor is concerned that the time it takes workers to complete an important production task (measured in seconds) is too erratic and adversely affects expected profits. The supervisor proceeds by randomly sampling five individuals per hour for a period of 10 hours. The sample mean and range for each hour are listed below.
She also decides that lower and upper specification limit for the critical-to-quality variable should be 10 and 30 seconds, respectively.
 Hour X‾‾R‾118.425216.927323.030421.223521.024624.025719.312815.814920.0131023.011\begin{array} { | l | l | l | } \hline \text { Hour } & \underline { \underline { X } } & \underline { R } \\\hline 1 & 18.4 & 25 \\\hline 2 & 16.9 & 27 \\\hline 3 & 23.0 & 30 \\\hline 4 & 21.2 & 23 \\\hline 5 & 21.0 & 24 \\\hline 6 & 24.0 & 25 \\\hline 7 & 19.3 & 12 \\\hline 8 & 15.8 & 14 \\\hline 9 & 20.0 & 13 \\\hline 10 & 23.0 & 11 \\\hline\end{array}

-Referring to Instruction 18-7,suppose the supervisor constructs an R chart to see if the process is in control.What are the lower and upper control limits of this chart?

A) 10.00, 30.00
B) 8.49, 32.03
C) 4.96, 35.56
D) 5.39, 35.13
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
76
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.The lower control limit for this data set is _______,while the upper control limit is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
77
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.One way to create the upper control limit involves multiplying the mean of the sample ranges by D4. For this data set,the value of D4 is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
78
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,the chart is to be used for the number of blemishes.The centre line of this chart is located at _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
79
Instruction 18-10
A supplier of silicone sheets for producers of computer chips wants to evaluate her manufacturing process. She takes a sample size of five from each day's output and counts the number of blemishes on each silicone sheet. The results from 20 days of such evaluations are presented below. She also decides that the upper specification limit is 10 blemishes.
Day12345MeanRange181014658.69281366108.67310127799.05459127108.6758389107.676979698.03710105767.65810910658.0596106998.0410698687.431185610107.85126477127.2813757696.8414588766.8315712106109.06167114787.4717845475.64181141111109.4719610610108.442061212688.86\begin{array}{llllllll}\text{Day}&1&2&3&4&5&\text{Mean}&\text{Range}\\\hline1 & 8 & 10 & 14 & 6 & 5 & 8.6 & 9 \\2 & 8 & 13 & 6 & 6 & 10 & 8.6 & 7 \\3 & 10 & 12 & 7 & 7 & 9 & 9.0 & 5 \\4 & 5 & 9 & 12 & 7 & 10 & 8.6 & 7 \\5 & 8 & 3 & 8 & 9 & 10 & 7.6 & 7 \\6 & 9 & 7 & 9 & 6 & 9 & 8.0 & 3 \\7 & 10 & 10 & 5 & 7 & 6 & 7.6 & 5 \\8 & 10 & 9 & 10 & 6 & 5 & 8.0 & 5 \\9 & 6 & 10 & 6 & 9 & 9 & 8.0 & 4 \\10 & 6 & 9 & 8 & 6 & 8 & 7.4 & 3 \\11 & 8 & 5 & 6 & 10 & 10 & 7.8 & 5 \\12 & 6 & 4 & 7 & 7 & 12 & 7.2 & 8 \\13 & 7 & 5 & 7 & 6 & 9 & 6.8 & 4 \\14 & 5 & 8 & 8 & 7 & 6 & 6.8 & 3 \\15 & 7 & 12 & 10 & 6 & 10 & 9.0 & 6 \\16 & 7 & 11 & 4 & 7 & 8 & 7.4 & 7 \\17 & 8 & 4 & 5 & 4 & 7 & 5.6 & 4 \\18 & 11 & 4 & 11 & 11 & 10 & 9.4 & 7 \\19 & 6 & 10 & 6 & 10 & 10 & 8.4 & 4 \\20 & 6 & 12 & 12 & 6 & 8 & 8.8 & 6\end{array}


-Referring to Instruction 18-10,an R chart is to be constructed for the number of blemishes.The lower control limit for this data set is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
80
Instruction 18-11
Recently, a university switched to a new type of computer-based registration. The registrar is concerned with the amount of time students are spending on the computer registering under the new system. She decides to randomly select eight students on each of the 12 days of the registration and determine the time each spends on the computer registering. The range, mean, and standard deviation of the times required to register are in the table that follows.
 Day  Range  Mean  Std. Dev 1105.2503.494923115.25010.306031320.3754.926242122.8758.39115358.50011.37676187.8756.937272511.2508.58158307.8759.523591710.2506.364010229.5007.874011277.8758.7086122612.8759.3723\begin{array}{llll}\text { Day } &\text { Range } & \text { Mean }&\text { Std. Dev }\\\hline1 & 10 & 5.250 & 3.4949 \\2 & 31 & 15.250 & 10.3060 \\3 & 13 & 20.375 & 4.9262 \\4 & 21 & 22.875 & 8.3911 \\5 & 35 & 8.500 & 11.3767 \\6 & 18 & 7.875 & 6.9372 \\7 & 25 & 11.250 & 8.5815 \\8 & 30 & 7.875 & 9.5235 \\9 & 17 & 10.250 & 6.3640 \\10 & 22 & 9.500 & 7.8740 \\11 & 27 & 7.875 & 8.7086 \\12 & 26 & 12.875 & 9.3723\end{array}


-Referring to Instruction 18-11,an R chart is to be constructed for the time required to register.One way to create the upper control limit involves multiplying the mean of the sample ranges by D4.For this data set,the value of D4 is _______.
Unlock Deck
Unlock for access to all 119 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 119 flashcards in this deck.