Deck 9: Infinite Series and Taylor Series Approximations

Full screen (f)
exit full mode
Question
Determine the interval of absolute convergence for the given power series. k=0k2(x6)k\sum _ { k = 0 } ^ { \infty } k ^ { 2 } \left( \frac { x } { 6 } \right) ^ { k }

A) 6<x<6- 6 < x < 6
B)All real x
C) 1<x<1- 1 < x < 1
D) 16<x<16- \frac { 1 } { 6 } < x < \frac { 1 } { 6 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the Taylor series for the given function at the indicated point x=ax = a \text {. } f(x)=e2x+e2xf ( x ) = e ^ { 2 x } + e ^ { - 2 x } ; a = 0

A) n=02(22n)(2n)!x2n\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { 2 n } \right) } { ( 2 n ) ! } x ^ { 2 n }
B) n=02(2n)n!x2n\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { n } \right) } { n ! } x ^ { 2 n }
C) n=02(22n+1)(2n+1)!x2n+1\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { 2 n + 1 } \right) } { ( 2 n + 1 ) ! } x ^ { 2 n + 1 }
D) n=02(2n)n!xn\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { n } \right) } { n ! } x ^ { n }
Question
Suppose that nationwide,approximately 91% of all income is spent and 9% is saved.What is the total amount of spending generated by a 55 billion dollar tax rebate if savings habits do not change?

A)$611 billion
B)$105 billion
C)$556 billion
D)$60 billion
Question
Determine whether the given geometric series converges,and if so,find its sum. n=037n\sum _ { n = 0 } ^ { \infty } \frac { 3 } { 7 ^ { n } }

A)Converges to 218\frac { 21 } { 8 }
B)Diverges.
C)Converges to 76\frac { 7 } { 6 }
D)Converges to 72\frac { 7 } { 2 }
Question
Use a Taylor polynomial of specified degree n together with term-by-term integration to estimate the indicated definite integral.Round to six decimal places 00.4ex2dx,n=6\int _ { 0 } ^ { 0.4 } e ^ { - x ^ { 2 } } d x , n = 6

A)0.422396
B)1.173483
C)0.469393
D)0.379652
Question
the given series converges. k=1lnk9k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 9 ^ { k } }
Question
Express the given decimal as a fraction. 1.4414414411.441441441 \ldots

A) 160111\frac { 160 } { 111 }
B) 174143\frac { 174 } { 143 }
C) 49111\frac { 49 } { 111 }
D) 6011\frac { 60 } { 11 }
Question
Use a Taylor polynomial of specified degree n to approximate the indicated quantity.Round to four decimal places. 361;n=3\sqrt { 361 } ; n = 3

A)6.0071
B)6.0083
C)6.0715
D)6.0166
Question
Determine the radius of convergence for the given power series. k=0kxk4k+1\sum _ { k = 0 } ^ { \infty } \frac { k x ^ { k } } { 4 ^ { k + 1 } }

A) R=R = 4
B) R=R = \infty
C) R=14R = \frac { 1 } { 4 }
D) R=R = 0
Question
The given series converges. k=1k9k2+6\sum _ { k = 1 } ^ { \infty } \frac { k - 9 } { k ^ { 2 } + 6 }
Question
Find the Taylor series about x=0x = 0 for the indefinite integral x15x2dx\int \frac { x } { 1 - 5 x ^ { 2 } } d x

A) n=052n2nx2n\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { 2 n } } { 2 n } x ^ { 2 n }
B) n=05n2n+2x2n+2\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n + 2 } x ^ { 2 n + 2 }
C) n=05n2nx2n\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n } x ^ { 2 n }
D) n=05n2n+1x2n+1\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n + 1 } x ^ { 2 n + 1 }
Question
The given series converges. k=146k+k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { 6 ^ { k } + k }
Question
The given series converges. k=1k32k\sum _ { k = 1 } ^ { \infty } \frac { k ^ { 3 } } { 2 ^ { k } }
Question
Find a power series for the given function. f(x)=x2xf ( x ) = \frac { x } { 2 - x }

A) n=0(x2)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 2 } \right) ^ { n }
B) n=0xn+12\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 }
C) n=0xn+12n+1\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 ^ { n + 1 } }
D) n=0xn+12n\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 ^ { n } }
Question
Determine whether the given geometric series converges,and if so,find its sum. n=1(59)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 5 } { 9 } \right) ^ { n }

A)Converges to 514- \frac { 5 } { 14 }
B)Converges to 54\frac { 5 } { 4 }
C)Diverges
D)Converges to 914\frac { 9 } { 14 }
Question
Find the fifth partial sum S5 of the given series. n=1(1)n3n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 3 ^ { n } }

A) 121243- \frac { 121 } { 243 }
B) 4081- \frac { 40 } { 81 }
C) 61243- \frac { 61 } { 243 }
D) 2081- \frac { 20 } { 81 }
Question
Use summation notation to write the given series in compact form. 14216+3644256+\frac { 1 } { 4 } - \frac { 2 } { 16 } + \frac { 3 } { 64 } - \frac { 4 } { 256 } + \cdots

A) n=1n(1)n1(14)n\sum _ { n = 1 } ^ { \infty } n ( - 1 ) ^ { n - 1 } \left( \frac { 1 } { 4 } \right) ^ { n }
B) n=1n4n\sum _ { n = 1 } ^ { \infty } \frac { - n } { 4 ^ { n } }
C) n=1n4n\sum _ { n = 1 } ^ { \infty } \frac { n } { 4 ^ { n } }
D) n=1(n4)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { n } { 4 } \right) ^ { n }
Question
If k=1ak=4 and k=1bk=9, find k=1(9ak2bk)\sum _ { k = 1 } ^ { \infty } a _ { k } = - 4 \text { and } \sum _ { k = 1 } ^ { \infty } b _ { k } = 9 \text {, find } \sum _ { k = 1 } ^ { \infty } \left( 9 a _ { k } - 2 b _ { k } \right)

A)18
B)-54
C)-13
D)-18
Question
A patient is given an injection of 21 units of a certain drug every 24 hours.The drug is eliminated exponentially so that the fraction that remains in the patient's body after t days is f(t)=et/5f ( t ) = e ^ { - t / 5 } If the treatment is continued indefinitely,approximately how many units of the drug will eventually be in the patient's body just prior to an injection?

A)94.85 units
B)46.65 units
C)115.85 units
D)141.50 units
Question
Determine the radius of convergence for the given power series. k=0k!xk6k\sum _ { k = 0 } ^ { \infty } \frac { k ! x ^ { k } } { 6 ^ { k } }

A) R=R = 16\frac { 1 } { 6 }
B) R=R = 6
C) R=R = \infty
D) R=R = 0
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/20
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Infinite Series and Taylor Series Approximations
1
Determine the interval of absolute convergence for the given power series. k=0k2(x6)k\sum _ { k = 0 } ^ { \infty } k ^ { 2 } \left( \frac { x } { 6 } \right) ^ { k }

A) 6<x<6- 6 < x < 6
B)All real x
C) 1<x<1- 1 < x < 1
D) 16<x<16- \frac { 1 } { 6 } < x < \frac { 1 } { 6 }
6<x<6- 6 < x < 6
2
Find the Taylor series for the given function at the indicated point x=ax = a \text {. } f(x)=e2x+e2xf ( x ) = e ^ { 2 x } + e ^ { - 2 x } ; a = 0

A) n=02(22n)(2n)!x2n\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { 2 n } \right) } { ( 2 n ) ! } x ^ { 2 n }
B) n=02(2n)n!x2n\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { n } \right) } { n ! } x ^ { 2 n }
C) n=02(22n+1)(2n+1)!x2n+1\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { 2 n + 1 } \right) } { ( 2 n + 1 ) ! } x ^ { 2 n + 1 }
D) n=02(2n)n!xn\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { n } \right) } { n ! } x ^ { n }
n=02(22n)(2n)!x2n\sum _ { n = 0 } ^ { \infty } \frac { 2 \left( 2 ^ { 2 n } \right) } { ( 2 n ) ! } x ^ { 2 n }
3
Suppose that nationwide,approximately 91% of all income is spent and 9% is saved.What is the total amount of spending generated by a 55 billion dollar tax rebate if savings habits do not change?

A)$611 billion
B)$105 billion
C)$556 billion
D)$60 billion
$611 billion
4
Determine whether the given geometric series converges,and if so,find its sum. n=037n\sum _ { n = 0 } ^ { \infty } \frac { 3 } { 7 ^ { n } }

A)Converges to 218\frac { 21 } { 8 }
B)Diverges.
C)Converges to 76\frac { 7 } { 6 }
D)Converges to 72\frac { 7 } { 2 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
5
Use a Taylor polynomial of specified degree n together with term-by-term integration to estimate the indicated definite integral.Round to six decimal places 00.4ex2dx,n=6\int _ { 0 } ^ { 0.4 } e ^ { - x ^ { 2 } } d x , n = 6

A)0.422396
B)1.173483
C)0.469393
D)0.379652
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
6
the given series converges. k=1lnk9k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 9 ^ { k } }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
7
Express the given decimal as a fraction. 1.4414414411.441441441 \ldots

A) 160111\frac { 160 } { 111 }
B) 174143\frac { 174 } { 143 }
C) 49111\frac { 49 } { 111 }
D) 6011\frac { 60 } { 11 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
8
Use a Taylor polynomial of specified degree n to approximate the indicated quantity.Round to four decimal places. 361;n=3\sqrt { 361 } ; n = 3

A)6.0071
B)6.0083
C)6.0715
D)6.0166
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
9
Determine the radius of convergence for the given power series. k=0kxk4k+1\sum _ { k = 0 } ^ { \infty } \frac { k x ^ { k } } { 4 ^ { k + 1 } }

A) R=R = 4
B) R=R = \infty
C) R=14R = \frac { 1 } { 4 }
D) R=R = 0
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
10
The given series converges. k=1k9k2+6\sum _ { k = 1 } ^ { \infty } \frac { k - 9 } { k ^ { 2 } + 6 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
11
Find the Taylor series about x=0x = 0 for the indefinite integral x15x2dx\int \frac { x } { 1 - 5 x ^ { 2 } } d x

A) n=052n2nx2n\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { 2 n } } { 2 n } x ^ { 2 n }
B) n=05n2n+2x2n+2\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n + 2 } x ^ { 2 n + 2 }
C) n=05n2nx2n\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n } x ^ { 2 n }
D) n=05n2n+1x2n+1\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 2 n + 1 } x ^ { 2 n + 1 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
12
The given series converges. k=146k+k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { 6 ^ { k } + k }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
13
The given series converges. k=1k32k\sum _ { k = 1 } ^ { \infty } \frac { k ^ { 3 } } { 2 ^ { k } }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
14
Find a power series for the given function. f(x)=x2xf ( x ) = \frac { x } { 2 - x }

A) n=0(x2)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 2 } \right) ^ { n }
B) n=0xn+12\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 }
C) n=0xn+12n+1\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 ^ { n + 1 } }
D) n=0xn+12n\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n + 1 } } { 2 ^ { n } }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
15
Determine whether the given geometric series converges,and if so,find its sum. n=1(59)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 5 } { 9 } \right) ^ { n }

A)Converges to 514- \frac { 5 } { 14 }
B)Converges to 54\frac { 5 } { 4 }
C)Diverges
D)Converges to 914\frac { 9 } { 14 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
16
Find the fifth partial sum S5 of the given series. n=1(1)n3n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 3 ^ { n } }

A) 121243- \frac { 121 } { 243 }
B) 4081- \frac { 40 } { 81 }
C) 61243- \frac { 61 } { 243 }
D) 2081- \frac { 20 } { 81 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
17
Use summation notation to write the given series in compact form. 14216+3644256+\frac { 1 } { 4 } - \frac { 2 } { 16 } + \frac { 3 } { 64 } - \frac { 4 } { 256 } + \cdots

A) n=1n(1)n1(14)n\sum _ { n = 1 } ^ { \infty } n ( - 1 ) ^ { n - 1 } \left( \frac { 1 } { 4 } \right) ^ { n }
B) n=1n4n\sum _ { n = 1 } ^ { \infty } \frac { - n } { 4 ^ { n } }
C) n=1n4n\sum _ { n = 1 } ^ { \infty } \frac { n } { 4 ^ { n } }
D) n=1(n4)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { n } { 4 } \right) ^ { n }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
18
If k=1ak=4 and k=1bk=9, find k=1(9ak2bk)\sum _ { k = 1 } ^ { \infty } a _ { k } = - 4 \text { and } \sum _ { k = 1 } ^ { \infty } b _ { k } = 9 \text {, find } \sum _ { k = 1 } ^ { \infty } \left( 9 a _ { k } - 2 b _ { k } \right)

A)18
B)-54
C)-13
D)-18
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
19
A patient is given an injection of 21 units of a certain drug every 24 hours.The drug is eliminated exponentially so that the fraction that remains in the patient's body after t days is f(t)=et/5f ( t ) = e ^ { - t / 5 } If the treatment is continued indefinitely,approximately how many units of the drug will eventually be in the patient's body just prior to an injection?

A)94.85 units
B)46.65 units
C)115.85 units
D)141.50 units
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
20
Determine the radius of convergence for the given power series. k=0k!xk6k\sum _ { k = 0 } ^ { \infty } \frac { k ! x ^ { k } } { 6 ^ { k } }

A) R=R = 16\frac { 1 } { 6 }
B) R=R = 6
C) R=R = \infty
D) R=R = 0
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 20 flashcards in this deck.