Exam 9: Infinite Series and Taylor Series Approximations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Express the given decimal as a fraction. 1.4414414411.441441441 \ldots

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

A

Use summation notation to write the given series in compact form. 14216+3644256+\frac { 1 } { 4 } - \frac { 2 } { 16 } + \frac { 3 } { 64 } - \frac { 4 } { 256 } + \cdots

Free
(Multiple Choice)
4.7/5
(34)
Correct Answer:
Verified

A

The given series converges. k=1k9k2+6\sum _ { k = 1 } ^ { \infty } \frac { k - 9 } { k ^ { 2 } + 6 }

Free
(True/False)
4.7/5
(24)
Correct Answer:
Verified

True

The given series converges. k=146k+k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { 6 ^ { k } + k }

(True/False)
4.8/5
(38)

Use a Taylor polynomial of specified degree n to approximate the indicated quantity.Round to four decimal places. 361;n=3\sqrt { 361 } ; n = 3

(Multiple Choice)
4.8/5
(37)

Find the fifth partial sum S5 of the given series. n=1(1)n3n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 3 ^ { n } }

(Multiple Choice)
4.7/5
(34)

Determine whether the given geometric series converges,and if so,find its sum. n=1(59)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 5 } { 9 } \right) ^ { n }

(Multiple Choice)
4.8/5
(35)

Determine the radius of convergence for the given power series. k=0kxk4k+1\sum _ { k = 0 } ^ { \infty } \frac { k x ^ { k } } { 4 ^ { k + 1 } }

(Multiple Choice)
4.8/5
(31)

The given series converges. k=1k32k\sum _ { k = 1 } ^ { \infty } \frac { k ^ { 3 } } { 2 ^ { k } }

(True/False)
4.8/5
(38)

If k=1ak=4 and k=1bk=9, find k=1(9ak2bk)\sum _ { k = 1 } ^ { \infty } a _ { k } = - 4 \text { and } \sum _ { k = 1 } ^ { \infty } b _ { k } = 9 \text {, find } \sum _ { k = 1 } ^ { \infty } \left( 9 a _ { k } - 2 b _ { k } \right)

(Multiple Choice)
4.9/5
(27)

Find a power series for the given function. f(x)=x2xf ( x ) = \frac { x } { 2 - x }

(Multiple Choice)
4.8/5
(34)

Suppose that nationwide,approximately 91% of all income is spent and 9% is saved.What is the total amount of spending generated by a 55 billion dollar tax rebate if savings habits do not change?

(Multiple Choice)
4.9/5
(33)

Determine the interval of absolute convergence for the given power series. k=0k2(x6)k\sum _ { k = 0 } ^ { \infty } k ^ { 2 } \left( \frac { x } { 6 } \right) ^ { k }

(Multiple Choice)
4.8/5
(35)

Determine the radius of convergence for the given power series. k=0k!xk6k\sum _ { k = 0 } ^ { \infty } \frac { k ! x ^ { k } } { 6 ^ { k } }

(Multiple Choice)
4.8/5
(25)

Find the Taylor series for the given function at the indicated point x=ax = a \text {. } f(x)=e2x+e2xf ( x ) = e ^ { 2 x } + e ^ { - 2 x } ; a = 0

(Multiple Choice)
4.9/5
(28)

the given series converges. k=1lnk9k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 9 ^ { k } }

(True/False)
4.7/5
(39)

Use a Taylor polynomial of specified degree n together with term-by-term integration to estimate the indicated definite integral.Round to six decimal places 00.4ex2dx,n=6\int _ { 0 } ^ { 0.4 } e ^ { - x ^ { 2 } } d x , n = 6

(Multiple Choice)
4.8/5
(34)

A patient is given an injection of 21 units of a certain drug every 24 hours.The drug is eliminated exponentially so that the fraction that remains in the patient's body after t days is f(t)=et/5f ( t ) = e ^ { - t / 5 } If the treatment is continued indefinitely,approximately how many units of the drug will eventually be in the patient's body just prior to an injection?

(Multiple Choice)
4.8/5
(30)

Find the Taylor series about x=0x = 0 for the indefinite integral x15x2dx\int \frac { x } { 1 - 5 x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(33)

Determine whether the given geometric series converges,and if so,find its sum. n=037n\sum _ { n = 0 } ^ { \infty } \frac { 3 } { 7 ^ { n } }

(Multiple Choice)
4.9/5
(37)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)