Deck 14: Integral Transform Method

Full screen (f)
exit full mode
Question
The solution of the integral equation <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> is

A) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Use Space or
up arrow
down arrow
to flip the card.
Question
In the three previous problems, the solution for <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Let <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> . The Fourier integral representation of f is

A) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
In the previous problem, the solution for <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, the integral converges at <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)   <div style=padding-top: 35px> to the value

A) 0
B) <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)   <div style=padding-top: 35px>
C) 1
D) 2
E) <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)   <div style=padding-top: 35px>
Question
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
In the previous two problems, the integral converges for <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above <div style=padding-top: 35px> to the function

A) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above <div style=padding-top: 35px>
B) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above <div style=padding-top: 35px>
C) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above <div style=padding-top: 35px>
D) 1
E) none of the above
Question
In the previous three problems, the solution for <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The complementary error function is defined as

A) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, assume that <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The solution for <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Apply a Fourier transform in <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> in the previous problem. The resulting equation for <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The Fourier cosine integral of a function f defined on <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, the integral converges at <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B) 1 C) 2 D) 3 E) 4 <div style=padding-top: 35px> to the value

A) 0
B) 1
C) 2
D) 3
E) 4
Question
In the previous problem, if <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> is

A) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
B) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
Question
Consider the temperature, <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , in an infinite rod <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , with an initial temperature of <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The mathematical model for this is

A) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, apply the Laplace transform. The resulting equation for <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , so that <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . Assume that <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The mathematical model for the deflection, <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , is

A) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The value of <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px> is

A) 0
B) 1
C) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
Question
The Fourier cosine integral of <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, assume that <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The solution for <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
The error function is defined as

A) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature, <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , at <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The mathematical model for this problem is

A) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The value of   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The value of <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px> is

A) 0
B) 1
C) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   <div style=padding-top: 35px>
Question
The Laplace transform of a function f is

A) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The Fourier integral representation of a function f is given by

A) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the three previous problems, the solution for the temperature <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
If <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, apply the Laplace transform. The resulting equation for <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Suppose <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> . In the convolution theorem, the formula for the Fourier transform is Select all that apply.

A) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
The complex form of the Fourier integral of a function f is

A) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, the integral representation converges at <strong>In the previous problem, the integral representation converges at   to the value</strong> A) 0 B) 1 C)   D) -1 E) none of the above <div style=padding-top: 35px> to the value

A) 0
B) 1
C) <strong>In the previous problem, the integral representation converges at   to the value</strong> A) 0 B) 1 C)   D) -1 E) none of the above <div style=padding-top: 35px>
D) -1
E) none of the above
Question
In the three previous problems, the solution for <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
If <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Let <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . The Fourier integral representation of f is <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , where

A) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Consider the problem of a vibrating string, tightly-stretched between <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> and <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , with a fixed initial position, <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , and zero initial velocity. The mathematical problem for the deflection, <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , is <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, apply a Fourier sine transform in x. The new problem for the transform <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is

A) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
In the previous problem, the solution is

A) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Integral Transform Method
1
The solution of the integral equation <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above is

A) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above
B) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above
C) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above
D) <strong>The solution of the integral equation   is</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
B
2
In the three previous problems, the solution for <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
B
3
Let <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above . The Fourier integral representation of f is

A) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above
B) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above
C) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above
D) <strong>Let   . The Fourier integral representation of f is</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
C
4
In the previous problem, the solution for <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, the solution for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
In the previous problem, the integral converges at <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)   to the value

A) 0
B) <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)
C) 1
D) 2
E) <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B)   C) 1 D) 2 E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
In the previous two problems, the integral converges for <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above to the function

A) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above
B) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above
C) <strong>In the previous two problems, the integral converges for   to the function</strong> A)   B)   C)   D) 1 E) none of the above
D) 1
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
In the previous three problems, the solution for <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous three problems, the solution for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The complementary error function is defined as

A) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)
B) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)
C) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)
D) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)
E) <strong>The complementary error function is defined as</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
In the previous problem, assume that <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   . The solution for <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
Apply a Fourier transform in <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   in the previous problem. The resulting equation for <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)
B) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)
C) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)
D) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)
E) <strong>Apply a Fourier transform in   in the previous problem. The resulting equation for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
The Fourier cosine integral of a function f defined on <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)   is

A) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)
B) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)
C) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)
D) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)
E) <strong>The Fourier cosine integral of a function f defined on   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
In the previous problem, the integral converges at <strong>In the previous problem, the integral converges at   to the value</strong> A) 0 B) 1 C) 2 D) 3 E) 4 to the value

A) 0
B) 1
C) 2
D) 3
E) 4
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
In the previous problem, if <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0 is

A) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0
B) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0
C) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0
D) <strong>In the previous problem, if   is</strong> A)   B)   C)   D)   E) 0
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
Consider the temperature, <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   , in an infinite rod <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   , with an initial temperature of <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)   . The mathematical model for this is

A) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)
B) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)
C) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)
D) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)
E) <strong>Consider the temperature,   , in an infinite rod   , with an initial temperature of   . The mathematical model for this is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
In the previous problem, apply the Laplace transform. The resulting equation for <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   , so that <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   . Assume that <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   . The mathematical model for the deflection, <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)   , is

A) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)
B) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)
C) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)
D) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)
E) <strong>Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at   , so that   . Assume that   . The mathematical model for the deflection,   , is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The value of <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   is

A) 0
B) 1
C) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
D) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
E) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
The Fourier cosine integral of <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)   is

A) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)
B) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)
C) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)
D) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)
E) <strong>The Fourier cosine integral of   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
In the previous problem, assume that <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   . The solution for <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, assume that   . The solution for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
B) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
C) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
D) <strong>The value of   is</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
The error function is defined as

A) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)
B) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)
C) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)
D) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)
E) <strong>The error function is defined as</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature, <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   , at <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)   . The mathematical model for this problem is

A) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)
B) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)
C) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)
D) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)
E) <strong>Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature,   , at   . The mathematical model for this problem is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The value of <strong>The value of   is</strong> A)   B)   C)   D)   E)   is

A) <strong>The value of   is</strong> A)   B)   C)   D)   E)
B) <strong>The value of   is</strong> A)   B)   C)   D)   E)
C) <strong>The value of   is</strong> A)   B)   C)   D)   E)
D) <strong>The value of   is</strong> A)   B)   C)   D)   E)
E) <strong>The value of   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
The value of <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)   is

A) 0
B) 1
C) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
D) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
E) <strong>The value of   is</strong> A) 0 B) 1 C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
The Laplace transform of a function f is

A) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)
B) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)
C) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)
D) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)
E) <strong>The Laplace transform of a function f is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
The Fourier integral representation of a function f is given by

A) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)
B) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)
C) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)
D) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)
E) <strong>The Fourier integral representation of a function f is given by</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
In the three previous problems, the solution for the temperature <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)
B) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)
C) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)
D) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)
E) <strong>In the three previous problems, the solution for the temperature   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
If <strong>If   is</strong> A)   B)   C)   D)   E)   is

A) <strong>If   is</strong> A)   B)   C)   D)   E)
B) <strong>If   is</strong> A)   B)   C)   D)   E)
C) <strong>If   is</strong> A)   B)   C)   D)   E)
D) <strong>If   is</strong> A)   B)   C)   D)   E)
E) <strong>If   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
In the previous problem, apply the Laplace transform. The resulting equation for <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, apply the Laplace transform. The resulting equation for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
Suppose <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above . In the convolution theorem, the formula for the Fourier transform is Select all that apply.

A) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above
B) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above
C) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above
D) <strong>Suppose   . In the convolution theorem, the formula for the Fourier transform is Select all that apply.</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
The complex form of the Fourier integral of a function f is

A) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)
B) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)
C) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)
D) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)
E) <strong>The complex form of the Fourier integral of a function f is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
In the previous problem, the integral representation converges at <strong>In the previous problem, the integral representation converges at   to the value</strong> A) 0 B) 1 C)   D) -1 E) none of the above to the value

A) 0
B) 1
C) <strong>In the previous problem, the integral representation converges at   to the value</strong> A) 0 B) 1 C)   D) -1 E) none of the above
D) -1
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
In the three previous problems, the solution for <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
B) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
C) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
D) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
E) <strong>In the three previous problems, the solution for   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
If <strong>If   is</strong> A)   B)   C)   D)   E)   is

A) <strong>If   is</strong> A)   B)   C)   D)   E)
B) <strong>If   is</strong> A)   B)   C)   D)   E)
C) <strong>If   is</strong> A)   B)   C)   D)   E)
D) <strong>If   is</strong> A)   B)   C)   D)   E)
E) <strong>If   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
Let <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   . The Fourier integral representation of f is <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)   , where

A) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)
B) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)
C) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)
D) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)
E) <strong>Let   . The Fourier integral representation of f is   , where</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
Consider the problem of a vibrating string, tightly-stretched between <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   and <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   , with a fixed initial position, <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   , and zero initial velocity. The mathematical problem for the deflection, <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)   , is <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)

A) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)
B) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)
C) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)
D) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)
E) <strong>Consider the problem of a vibrating string, tightly-stretched between   and   , with a fixed initial position,   , and zero initial velocity. The mathematical problem for the deflection,   , is  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
In the previous problem, apply a Fourier sine transform in x. The new problem for the transform <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)   is

A) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, apply a Fourier sine transform in x. The new problem for the transform   is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
In the previous problem, the solution is

A) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)
B) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)
C) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)
D) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)
E) <strong>In the previous problem, the solution is</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.