Exam 14: Integral Transform Method

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

In the previous problem, assume that f(x)=sin(πx)f ( x ) = \sin ( \pi x ) . The solution for U(x,s)U ( x , s ) is

Free
(Multiple Choice)
4.9/5
(32)
Correct Answer:
Verified

D

In the three previous problems, the solution for the temperature u(x,t)u ( x , t ) is

Free
(Multiple Choice)
4.7/5
(36)
Correct Answer:
Verified

E

Let f(x)={0 if x<11 if 1<x<10 if x>1}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < - 1 \\1 & \text { if } & - 1 < x < 1 \\0 & \text { if } & x > 1\end{array} \right\} . The Fourier integral representation of f is f(x)=0[A(α)cos(αx)+B(α)sin(αx)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } [ A ( \alpha ) \cos ( \alpha x ) + B ( \alpha ) \sin ( \alpha x ) ] d \alpha / \pi , where

Free
(Multiple Choice)
4.7/5
(41)
Correct Answer:
Verified

E

Let f(x)={0 if x<02 if 0x30 if x>3}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < 0 \\2 & \text { if } & 0 \leq x \leq 3 \\0 & \text { if } & x > 3\end{array} \right\} . The Fourier integral representation of f is

(Multiple Choice)
4.8/5
(36)

The value of L{eterf(t)}\mathcal { L } \left\{ \mathrm { e } ^ { t } \operatorname { erf } ( \sqrt { t } ) \right\} is

(Multiple Choice)
4.9/5
(41)

In the previous problem, the integral representation converges at x=1x = 1 to the value

(Multiple Choice)
4.7/5
(29)

In the previous problem, the solution is

(Multiple Choice)
4.7/5
(31)

In the three previous problems, the solution for u(x,t)u ( x , t ) is

(Multiple Choice)
4.9/5
(39)

Suppose F{f(x)}=F(α),F{g(x)}=G(α)\mathcal { F } \{ f ( x ) \} = F ( \alpha ) , \mathcal { F } \{ g ( x ) \} = G ( \alpha ) . In the convolution theorem, the formula for the Fourier transform is Select all that apply.

(Multiple Choice)
4.9/5
(37)

In the previous problem, assume that f(x)=sin(πt)f ( x ) = \sin ( \pi t ) . The solution for U(x,s)U ( x , s ) is

(Multiple Choice)
4.8/5
(25)

If U(x,s)=C{u(x,t)}, then {2ut2}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} , \text { then } \left\{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } \right\} is

(Multiple Choice)
4.7/5
(33)

Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at x=0x = 0 , so that u(0,t)=f(t)u ( 0 , t ) = f ( t ) . Assume that limxu(x,t)=0\lim _ { x \rightarrow \infty } u ( x , t ) = 0 . The mathematical model for the deflection, u(x,t)u ( x , t ) , is

(Multiple Choice)
4.9/5
(25)

In the previous problem, the integral converges at x=0x = 0 to the value

(Multiple Choice)
4.9/5
(33)

Apply a Fourier transform in xx in the previous problem. The resulting equation for U(α,t)=F{u(x,t)}U ( \alpha , t ) = \mathcal { F } \{ u ( x , t ) \} is

(Multiple Choice)
4.8/5
(34)

The Fourier cosine integral of a function f defined on [0,][ 0 , \infty ] is

(Multiple Choice)
4.9/5
(33)

If U(x,s)=C{u(x,t)}, then L{ux}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} \text {, then } \mathcal { L } \left\{ \frac { \partial u } { \partial x } \right\} is

(Multiple Choice)
4.8/5
(38)

The error function is defined as

(Multiple Choice)
4.9/5
(36)

The value of L{erfc(t)}\mathcal { L } \{ \operatorname { erfc } ( \sqrt { t } ) \} is

(Multiple Choice)
4.9/5
(31)

The Laplace transform of a function f is

(Multiple Choice)
4.8/5
(34)

The complementary error function is defined as

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)