Deck 17: Second-Order Differential Equations

Full screen (f)
exit full mode
Question
A spring with a mass of 2 kg has damping constant 14, and a force of A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t.<div style=padding-top: 35px> N is required to keep the spring stretched A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t.<div style=padding-top: 35px> m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t.
Use Space or
up arrow
down arrow
to flip the card.
Question
Solve the differential equation using the method of variation of parameters. y+4y+4y=e2xx3y ^ { \prime \prime } + 4 y ^ { \prime } + 4 y = \frac { e ^ { - 2 x } } { x ^ { 3 } }

A) y(x)=e2x(c1+c212x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } \frac { 1 } { 2 x } \right)
B) y(x)=e2x(c1+c2x+12x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x + \frac { 1 } { 2 x } \right)
C) y(x)=e2x(c1+c2)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } \right)
D) y(x)=e2x(c1+c2x)+12xy ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x \right) + \frac { 1 } { 2 x }
E) y(x)=e2x(c1+c2x+c312x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x + c _ { 3 } \frac { 1 } { 2 x } \right)
Question
Use power series to solve the differential equation.. (x2+1)y+xyy=0\left( x ^ { 2 } + 1 \right) y ^ { \prime \prime } + x y ^ { \prime } - y = 0

A) y(x)=c0n=2(1)n1(2n3)!22n2n!(n2)!x2ny ( x ) = c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
B) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2n!(n2)!x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
C) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2(n2)!x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } ( n - 2 ) ! } x ^ { 2 n }
D) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2n!(n2)!x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
E) y(x)=c0+c1x+c0x22+c0n=2(1)n+1(2n)!22n+2n!(n2)!x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 2 n ) ! } { 2 ^ { 2 n + 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
Question
Use power series to solve the differential equation. y=25yy ^ { \prime \prime } = 25 y

A) y(x)=c1cosh5x+c2sinh5xy ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x
B) y(x)=c15coshx+c25sinhx+exy ( x ) = c _ { 1 } 5 \cosh x + c _ { 2 } 5 \sinh x + e ^ { x }
C) y(x)=5coshx+5sinhxy ( x ) = 5 \cosh x + 5 \sinh x
D) y(x)=c1cosh5x+c2sinh5x+exy ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x + e ^ { x }
E) y(x)=c1cosh5x+c2sinh5x+x2y ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x + x ^ { 2 }
Question
A series circuit consists of a resistor R=32ΩR = 32 \Omega , an inductor with L=4HL = 4 H , a capacitor with C=0.003125 FC = 0.003125 \mathrm {~F} , and a 2424 -V battery. If the initial charge is 0.0008 C and the initial current is 0, find the current I(t) at time t.

A) I(t)=0.742e4tsin(8t)I ( t ) = 0.742 e ^ { - 4 t } \sin ( 8 t )
B) I(t)=e4t160cos(8t)I ( t ) = \frac { e ^ { - 4 t } } { 160 } \cos ( 8 t )
C) I(t)=e4t160cos(8t)12I ( t ) = \frac { e ^ { - 4 t } } { 160 } \cos ( 8 t ) - \frac { 1 } { 2 }
D) I(t)=0.742e8tI ( t ) = 0.742 e ^ { - 8 t }
E) I(t)=e4t160(0.003125cos(4t)+8sin(4t))12I ( t ) = \frac { e ^ { - 4 t } } { 160 } ( 0.003125 \cos ( 4 t ) + 8 \sin ( 4 t ) ) - \frac { 1 } { 2 }
Question
Use power series to solve the differential equation. y=7x3yy ^ { \prime } = 7 x ^ { 3 } y

A) y(x)=7ex44y ( x ) = 7 e ^ { \frac { x ^ { 4 } } { 4 } }
B) y(x)=ce7xy ( x ) = c e ^ { 7 x }
C) y(x)=ex44y ( x ) = e ^ { - \frac { x ^ { 4 } } { 4 } }
D) y(x)=ce7x44y ( x ) = c e ^ { - \frac { 7 x ^ { 4 } } { 4 } }
E) y(x)=ce7x44y ( x ) = c e ^ { \frac { 7 x ^ { 4 } } { 4 } }
Question
A series circuit consists of a resistor A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.<div style=padding-top: 35px> an inductor with L = A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.<div style=padding-top: 35px> H, a capacitor with
C = A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.<div style=padding-top: 35px> F, and a A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.<div style=padding-top: 35px> -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.
Question
A spring has a mass of 11 kg and its damping constant is c=10c = 10 . The spring starts from its equilibrium position with a velocity of 11 m/s. Graph the position function for the spring constant k=20k = 20 .

A)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)   <div style=padding-top: 35px>
B)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)   <div style=padding-top: 35px>
C)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)   <div style=padding-top: 35px>
Question
Use power series to solve the differential equation. (x10)y+2y=0( x - 10 ) y ^ { \prime } + 2 y = 0

A) y(x)=c0n=0xn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 10 ^ { n } }
B) y(x)=c0n=0n+110nxny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n + 1 } { 10 ^ { n } } x ^ { n }
C) y(x)=c0n=0(n+1)xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { ( n + 1 ) } { x ^ { n } }
D) y(x)=c0n=0(n+1)xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } ( n + 1 ) x ^ { n }
E) y(x)=c0n=0nxn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n x ^ { n } } { 10 ^ { n } }
Question
A spring with a 1616 -kg mass has natural length 0.80.8 m and is maintained stretched to a length of 1.21.2 m by a force of 19.619.6 N. If the spring is compressed to a length of 0.40.4 m and then released with zero velocity, find the position x(t)x ( t ) of the mass at any time tt .

A) x(t)=0.4e4tcos(0.4t)x ( t ) = - 0.4 e ^ { - 4 t } \cos ( 0.4 t )
B) x(t)=0.8sin(1.75t)x ( t ) = 0.8 \sin ( 1.75 t )
C) x(t)=0.4e4tcos(1.75t)x ( t ) = - 0.4 e ^ { - 4 t } \cos ( 1.75 t )
D) x(t)=0.4cos(1.75t)+0.4sin(1.75t)x ( t ) = - 0.4 \cos ( 1.75 t ) + 0.4 \sin ( 1.75 t )
E) x(t)=0.4cos(1.75t)x ( t ) = - 0.4 \cos ( 1.75 t )
Question
Suppose a spring has mass M and spring constant k and let ω=k/M\omega = \sqrt { k / M } . Suppose that the damping constant is so small that the damping force is negligible. If an external force F(t)=8F0cos(ωt)F ( t ) = 8 F _ { 0 } \cos ( \omega t ) is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to find the equation that describes the motion of the mass.

A) x(t)=c1cos(ωt)+c2sin(ωt)+F0t22Mωsin(ωt)x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } t ^ { - 2 } } { 2 M \omega } \sin ( \omega t )
B) x(t)=c1cos(ωt)+c2sin(ωt)+F0eωt2Mωx ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } e ^ { - \omega t } } { 2 M \omega }
C) x(t)=c1cos(ωt)+c2sin(ωt)+4F0tMωsin(ωt)x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { 4 F _ { 0 } t } { M \omega } \sin ( \omega t )
D) x(t)=F0t22Mωcos(ωt)x ( t ) = \frac { F _ { 0 } t ^ { 2 } } { 2 M \omega } \cos ( \omega t )
E) x(t)=F0t2Mω(c1cos(ωt)+c2sin(ωt))x ( t ) = \frac { F _ { 0 } t } { 2 M \omega } \left( c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) \right)
Question
A spring with a mass of 2 kg has damping constant 14, and a force of A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. Find the mass that would produce critical damping.<div style=padding-top: 35px> N is required to keep the spring stretched A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. Find the mass that would produce critical damping.<div style=padding-top: 35px> m beyond its natural length. Find the mass that would produce critical damping.
Question
A spring with a mass of 99 kg has damping constant 28 and spring constant 195195 . Find the damping constant that would produce critical damping.

A) c=c = 3619536 \sqrt { 195 }
B) c=c = 23402340
C) c=1959c = 195 \sqrt { 9 }
D) c=c = 9 195\sqrt { 195 }
E) c=c = 61956 \sqrt { 195 }
Question
Use power series to solve the differential equation. yxyy=0,y(0)=7,y(0)=0y ^ { \prime \prime } - x y ^ { \prime } - y = 0 , y ( 0 ) = 7 , y ^ { \prime } ( 0 ) = 0

A) y(x)=7exy ( x ) = 7 e ^ { x }
B) y(x)=7ex22y ( x ) = 7 e ^ { - \frac { x ^ { 2 } } { 2 } }
C) y(x)=e7xy ( x ) = e ^ { 7 x }
D) y(x)=cex22y ( x ) = c e ^ { \frac { x ^ { 2 } } { 2 } }
E) y(x)=7ex22y ( x ) = 7 e ^ { \frac { x ^ { 2 } } { 2 } }
Question
A spring with a 3-kg mass is held stretched 0.9 m beyond its natural length by a force of 30 N. If the spring begins at its equilibrium position but a push gives it an initial velocity of 11 m/s, find the position x(t) of the mass after t seconds.

A) x(t)=1sin(7t)x ( t ) = 1 \sin ( 7 t )
B) x(t)=0.3sin(103t)+0.4cos(103t)x ( t ) = 0.3 \sin \left( \frac { 10 } { 3 } t \right) + 0.4 \cos \left( \frac { 10 } { 3 } t \right)
C) x(t)=0.3sin(103t)x ( t ) = 0.3 \sin \left( \frac { 10 } { 3 } t \right)
D) x(t)=0.4cos(103t)x ( t ) = 0.4 \cos \left( \frac { 10 } { 3 } t \right)
E) x(t)=103sin(7t)x ( t ) = \frac { 10 } { 3 } \sin ( 7 t )
Question
The solution of the initial-value problem x2y+xy+x2y=0,y(0)=1,y(0)=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0 is called a Bessel function of order 0. Solve the initial - value problem to find a power series expansion for the Bessel function.

A) y(x)=n=0(1)n+1nx2n122n1(n!)2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } \frac { n x ^ { 2 n - 1 } } { 2 ^ { 2 n - 1 } ( n ! ) ^ { 2 } }
B) y(x)=n=0(1)nxn2n(2n!)y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { n } } { 2 ^ { n } ( 2 n ! ) }
C) y(x)=n=0(1)nx2n22n(n!)2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }
D) y(x)=2x+n=0(1)nx2n(n!)2y ( x ) = 2 ^ { x } + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { ( n ! ) ^ { 2 } }
E) y(x)=x+n=0(1)nx2n22n(n!)2y ( x ) = x + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }
Question
A series circuit consists of a resistor R=96ΩR = 96 \Omega , an inductor with L=8HL = 8 \mathrm { H } , a capacitor with C=0.00125 FC = 0.00125 \mathrm {~F} , and a generator producing a voltage of E(t)=48cos(10t)E ( t ) = 48 \cos ( 10 t ) If the initial charge is Q=0.001CQ = 0.001 \mathrm { C } and the initial current is 0, find the charge Q(t)Q ( t ) at time t.

A) Q(t)=e6t(0.001cos(8t)0.06175sin(8t))+120sin(10t)Q ( t ) = e ^ { - 6 t } ( 0.001 \cos ( 8 t ) - 0.06175 \sin ( 8 t ) ) + \frac { 1 } { 20 } \sin ( 10 t )
B) Q(t)=e2t(0.051cos(2t)0.06175sin(2t))+120sin(10t)Q ( t ) = e ^ { - 2 t } ( 0.051 \cos ( 2 t ) - 0.06175 \sin ( 2 t ) ) + \frac { 1 } { 20 } \sin ( 10 t )
C) Q(t)=e6t(cos(6t)0.06175sin(6t))Q ( t ) = e ^ { - 6 t } ( \cos ( 6 t ) - 0.06175 \sin ( 6 t ) )
D) Q(t)=e3t(cos(5t)0.06175sin(5t))Q ( t ) = e ^ { - 3 t } ( \cos ( 5 t ) - 0.06175 \sin ( 5 t ) )
E) Q(t)=e6t(0.001cos(8t)0.06175sin(8t))Q ( t ) = e ^ { - 6 t } ( 0.001 \cos ( 8 t ) - 0.06175 \sin ( 8 t ) )
Question
A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.

A) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)   <div style=padding-top: 35px>
B) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)   <div style=padding-top: 35px>
C) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)   <div style=padding-top: 35px>
Question
The figure shows a pendulum with length L and the angle θ\theta from the vertical to the pendulum. It can be shown that θ\theta , as a function of time, satisfies the nonlinear differential equation d2θdt2+gLsinθ=0\frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0 where g=9.8 m/s2g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }  is the acceleration due to gravity. For small values of \text { is the acceleration due to gravity. For small values of } θ\theta we can use the linear approximation sinθ=θ\sin \theta = \theta  and then the differential equation becomes linear. Find the equation \text { and then the differential equation becomes linear. Find the equation }  of motion of a pendulum with length 1 m if θ is initially 0.2rad and the initial \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }  angular velocity is \text { angular velocity is } dθdt=1rad/s\frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }  <strong>The figure shows a pendulum with length L and the angle  \theta  from the vertical to the pendulum. It can be shown that  \theta  , as a function of time, satisfies the nonlinear differential equation  \frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0  where  g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }   \text { is the acceleration due to gravity. For small values of }   \theta  we can use the linear approximation  \sin \theta = \theta   \text { and then the differential equation becomes linear. Find the equation }   \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }   \text { angular velocity is }   \frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }   </strong> A)  \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )  B)  \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )  C)  \theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )  D)  \theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )  E)  \theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )  <div style=padding-top: 35px>

A) θ(t)=0.2cos(9.8t)+19.8sin(9.8t)\theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )
B) θ(t)=0.2cos(9.8t)+2sin(9.8t)\theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )
C) θ(t)=2cos(9.8t)+19.8sin(9.8t)\theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )
D) θ(t)=19.8cos(9.8t)+0.2sin(9.8t)\theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )
E) θ(t)=0.2sin(9.8t)+19.8cos(9.8t)\theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )
Question
Use power series to solve the differential equation. y+x2y=0,y(0)=6,y(0)=0y ^ { \prime \prime } + x ^ { 2 } y = 0 , y ( 0 ) = 6 , y ^ { \prime } ( 0 ) = 0

A) y(x)=6n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = 6 - \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
B) y(x)=n=1(1)n6x4n4n(4n1)(4n4)(4n5)43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
C) y(x)=6+n=1(1)n6x4n4n(4n1)(4n4)(4n5)43y ( x ) = 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
D) y(x)=6+n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = - 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
E) y(x)=n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
Question
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of undetermined coefficients. Solve the differential equation using the method of undetermined coefficients.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of undetermined coefficients. y3y=sin9xy ^ { \prime \prime } - 3 y ^ { \prime } = \sin 9 x

A) y(x)=c1e3x+1270cos(6x)190sin(6x)y ( x ) = c _ { 1 } e ^ { 3 x } + \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
B) y(x)=c1+c2e3x+1270cos(6x)190sin(6x)y ( x ) = c _ { 1 } + c _ { 2 } e ^ { 3 x } + \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
C) y(x)=c1e3x+190cos(6x)+1270sin(6x)y ( x ) = c _ { 1 } e ^ { 3 x } + \frac { 1 } { 90 } \cos ( 6 x ) + \frac { 1 } { 270 } \sin ( 6 x )
D) y(x)=c1+c2e3x190sin(6x)y ( x ) = c _ { 1 } + c _ { 2 } e ^ { 3 x } - \frac { 1 } { 90 } \sin ( 6 x )
E) y(x)=1270cos(6x)190sin(6x)y ( x ) = \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
Question
Solve the differential equation using the method of undetermined coefficients. y+6y+9y=2+xy ^ { \prime \prime } + 6 y ^ { \prime } + 9 y = 2 + x

A) y(x)=c1e3x+c2xe3x+29x+427y ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x } + \frac { 2 } { 9 } x + \frac { 4 } { 27 }
B) y(x)=c1e3x+c2xe3xy ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x }
C) y(x)=c1e3x+c2xe3x+29xy ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x } + \frac { 2 } { 9 } x
D) y(x)=c1e3x+29x+427y ( x ) = c _ { 1 } e ^ { - 3 x } + \frac { 2 } { 9 } x + \frac { 4 } { 27 }
E) y(x)=c1xe3x+c2x2e3x+427xy ( x ) = c _ { 1 } x e ^ { - 3 x } + c _ { 2 } x ^ { 2 } e ^ { - 3 x } + \frac { 4 } { 27 } x
Question
Solve the differential equation using the method of variation of parameters. y+y=secx,π4<x<π2y ^ { \prime \prime } + y = \sec x , \frac { \pi } { 4 } < x < \frac { \pi } { 2 }

A) y(x)=c1+[c2+ln(sinx)]sinxy ( x ) = c _ { 1 } + \left[ c _ { 2 } + \ln ( \sin x ) \right] \sin x
B) y(x)=(c1+x)sinx+c2+ln(cosx)y ( x ) = \left( c _ { 1 } + x \right) \sin x + c _ { 2 } + \ln ( \cos x )
C) y(x)=π2sinx+[π2+ln(cosx)]cosxy ( x ) = \frac { \pi } { 2 } \sin x + \left[ \frac { \pi } { 2 } + \ln ( \cos x ) \right] \cos x
D) y(x)=[π4+ln(cosx)]cosxy ( x ) = \left[ \frac { \pi } { 4 } + \ln ( \cos x ) \right] \cos x
E) y(x)=(c1+x)sinx+[c2+ln(cosx)]cosxy ( x ) = \left( c _ { 1 } + x \right) \sin x + \left[ c _ { 2 } + \ln ( \cos x ) \right] \cos x
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Find a trial solution for the method of undetermined coefficients. Do not determine the coefficients. y+2y=1+xe4xy ^ { \prime \prime } + 2 y ^ { \prime } = 1 + x e ^ { - 4 x }

A) yp1(x)=Ayp2(x)=Bxe4x\begin{array} { l } y _ { p 1 } ( x ) = A \\y _ { p 2 } ( x ) = B x e ^ { 4 x }\end{array}
B) yp1(x)=Axyp2(x)=x(Ax+B)e4x\begin{array} { l } y _ { p 1 } ( x ) = A x \\y _ { p 2 } ( x ) = x ( A x + B ) e ^ { - 4 x }\end{array}
C) y71(x)=Ayp2(x)=x(A+B)e4x\begin{array} { l } y _ { 71 } ( x ) = A \\y _ { p 2 } ( x ) = x ( A + B ) e ^ { - 4 x }\end{array}
D) yp1(x)=Axyp2(x)=x2(Ax+B)e4x\begin{array} { l } y _ { p 1 } ( x ) = A x \\y _ { p 2 } ( x ) = x ^ { 2 } ( A x + B ) e ^ { - 4 x }\end{array}
E) yp1(x)=Ayp2(x)=x(A+Bx)e4x\begin{array} { l } y _ { p 1 } ( x ) = A \\y _ { p 2 } ( x ) = x ( A + B x ) e ^ { - 4 x }\end{array}
Question
Solve the initial-value problem using the method of undetermined coefficients. Solve the initial-value problem using the method of undetermined coefficients.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of undetermined coefficients. y+5y+6y=x2y ^ { \prime \prime } + 5 y ^ { \prime } + 6 y = x ^ { 2 }

A) y(x)=c1e2x+c2e3xy ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x }
B) y(x)=16x2518x+19108y ( x ) = \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 }
C) y(x)=c1e2x+c2e3x+16x2y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 1 } { 6 } x ^ { 2 }
D) y(x)=c1e2x+c2e3x+16x2518x+19108y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 }
E) y(x)=c1e2x+c2e3x+9108c3y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 9 } { 108 } c _ { 3 }
Question
Graph the particular solution and several other solutions. 2y+3y+y=2+cos2x2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x

A)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)   <div style=padding-top: 35px>
B)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)   <div style=padding-top: 35px>
C)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)   <div style=padding-top: 35px>
Question
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of variation of parameters. y4y+3y=2sinxy ^ { \prime \prime } - 4 y ^ { \prime } + 3 y = 2 \sin x

A) y(x)=c1sinx+c25x+210sinxy ( x ) = c _ { 1 } \sin x + \frac { c _ { 2 } } { 5 } x + \frac { 2 } { 10 } \sin x
B) y(x)=c1e3x+c2ex+25sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \sin x
C) y(x)=c1sin3x+c24x+cos3xy ( x ) = c _ { 1 } \sin 3 x + \frac { c _ { 2 } } { 4 } x + \cos 3 x
D) y(x)=c1e3x+c2ex+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 10 } \sin x
E) y(x)=c1e3x+c2ex+25cosx+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \cos x + \frac { 2 } { 10 } \sin x
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Solve the initial-value problem using the method of undetermined coefficients. Solve the initial-value problem using the method of undetermined coefficients.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.  <div style=padding-top: 35px>
Question
Find a trial solution for the method of undetermined coefficients. Do not determine the coefficients. y+3y+5y=x4e9xy ^ { \prime \prime } + 3 y ^ { \prime } + 5 y = x ^ { 4 } e ^ { 9 x }

A) yy(x)=(Ax4+Bx2+C)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B x ^ { 2 } + C \right) e ^ { - 9 x }
B) yy(x)=(Ax3+Bx2+Cx+D)e9xy _ { y } ( x ) = \left( A x ^ { 3 } + B x ^ { 2 } + C x + D \right) e ^ { 9 x }
C) yy(x)=(Ax4+B)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B \right) e ^ { 9 x }
D) yy(x)=Ax9y _ { y } ( x ) = A x ^ { 9 }
E) yy(x)=(Ax4+Bx3+Cx2+Dx+E)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B x ^ { 3 } + C x ^ { 2 } + D x + E \right) e ^ { 9 x }
Question
Solve the differential equation using the method of undetermined coefficients. Solve the differential equation using the method of undetermined coefficients.  <div style=padding-top: 35px>
Question
Solve the differential equation using the method of variation of parameters. yy=e2xy ^ { \prime \prime } - y ^ { \prime \prime } = e ^ { 2 x }

A) y(x)=c1+c2ex+xe2x2y ( x ) = c _ { 1 } + c _ { 2 } e ^ { x } + \frac { x e ^ { 2 x } } { 2 }
B) y(x)=c1+c2xex+2e2xy ( x ) = c _ { 1 } + c _ { 2 } x e ^ { x } + 2 e ^ { 2 x }
C) y(x)=c1+xe2xy ( x ) = c _ { 1 } + x e ^ { 2 x }
D) y(x)=c1+c2xe2xy ( x ) = c _ { 1 } + c _ { 2 } x e ^ { 2 x }
E) y(x)=c1+(1+x)xe2xy ( x ) = c _ { 1 } + ( 1 + x ) x e ^ { 2 x }
Question
Solve the differential equation. y4y+13y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 13 y = 0

A) y(x)=ce2xcos(3x)y ( x ) = c e ^ { 2 x } \cos ( 3 x )
B) y(x)=e2x(c1cos(3x)+c2xsin(3x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
C) y(x)=e2x(c1cos(3x)+c2sin(3x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
D) y(x)=e3x(c1cos(2x)+c2sin(2x))y ( x ) = e ^ { 3 x } \left( c _ { 1 } \cos ( 2 x ) + c _ { 2 } \sin ( 2 x ) \right)
E) y(x)=e2x(c1cos(2x)+c2xsin(2x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 2 x ) + c _ { 2 } x \sin ( 2 x ) \right)
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Solve the differential equation. y8y+25y=0y ^ { \prime \prime } - 8 y ^ { \prime } + 25 y = 0

A) y(x)=ce4xcos(3x)y ( x ) = c e ^ { 4 x } \cos ( 3 x )
B) y(x)=e4x(c1cos(3x)+c2xsin(3x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
C) y(x)=e4x(c1cos(4x)+c2xsin(4x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } x \sin ( 4 x ) \right)
D) y(x)=e3x(c1cos(4x)+c2sin(4x))y ( x ) = e ^ { 3 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } \sin ( 4 x ) \right)
E) y(x)=e4x(c1cos(3x)+c2sin(3x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
Question
Solve the boundary-value problem, if possible. Solve the boundary-value problem, if possible.  <div style=padding-top: 35px>
Question
Solve the differential equation. y8y+25y=0y ^ { \prime \prime } - 8 y ^ { \prime } + 25 y = 0

A) y=c1cos(3x)+c2xsin(3x)y = c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x )
B) y=ce4xcos(3x)y = c e ^ { 4 x } \cos ( 3 x )
C) y=e4x(c1cos(4x)+c2xsin(4x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } x \sin ( 4 x ) \right)
D) y=e4x(c1cos(3x)+c2sin(3x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
E) y=e4x(c1cos(3x)+c2xsin(3x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
Question
Solve the differential equation. 4y+y=04 y ^ { \prime \prime } + y = 0

A) y(x)=c1cos(x4)+c2sin(x2)y ( x ) = c _ { 1 } \cos \left( - \frac { x } { 4 } \right) + c _ { 2 } \sin \left( - \frac { x } { 2 } \right)
B) y(x)=c1cos(4x)c2sin(4x)y ( x ) = c _ { 1 } \cos ( 4 x ) - c _ { 2 } \sin ( 4 x )
C) y(x)=c1cos(2x)+c2sin(2x)y ( x ) = c _ { 1 } \cos ( 2 x ) + c _ { 2 } \sin ( 2 x )
D) y(x)=c1cos(2x)+c2sin(2x)y ( x ) = c _ { 1 } \cos ( - 2 x ) + c _ { 2 } \sin ( - 2 x )
E) y(x)=c1cos(x2)+c2sin(x2)y ( x ) = c _ { 1 } \cos \left( \frac { x } { 2 } \right) + c _ { 2 } \sin \left( \frac { x } { 2 } \right)
Question
Solve the boundary-value problem, if possible. y+5y36y=0,y(0)=0,y(2)=1y ^ { \prime \prime } + 5 y ^ { \prime } - 36 y = 0 , y ( 0 ) = 0 , y ( 2 ) = 1

A) y(x)=(e8e18)1(e4xe9x)y ( x ) = \left( e ^ { 8 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { 4 x } - e ^ { - 9 x } \right)
B) y(x)=(e4e18)(e4xe9x)y ( x ) = \left( e ^ { 4 } - e ^ { - 18 } \right) \left( e ^ { 4 x } - e ^ { - 9 x } \right)
C) y(x)=(e9e18)1(exe9x)y ( x ) = \left( e ^ { 9 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { x } - e ^ { - 9 x } \right)
D) y(x)=(e4e18)1(e4xe9x)y ( x ) = \left( e ^ { 4 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { 4 x } - e ^ { - 9 x } \right)
E) No solution
Question
Solve the initial-value problem. Solve the initial-value problem.  <div style=padding-top: 35px>
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Solve the differential equation. d2ydt2+dydt+3y=0\frac { d ^ { 2 } y } { d t ^ { 2 } } + \frac { d y } { d t } + 3 y = 0

A) y(t)=tet2[c1cos(11t2)+c2sin(11t2)]y ( t ) = t e ^ { \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { 11 } t } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { 11 } t } { 2 } \right) \right]
B) y(t)=e22[c1cos(t2)+c2sin(t2)]y ( t ) = e ^ { \frac { \sqrt { 2 } } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { t } } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { t } } { 2 } \right) \right]
C) y(t)=et2[c1cos(11t2)+c2sin(11t2)]y ( t ) = e ^ { - \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { 11 } t } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { 11 } t } { 2 } \right) \right]
D) y(t)=t2et2[c1cos(11t2)+c2sin(11t2)]y ( t ) = t ^ { 2 } e ^ { - \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \sqrt { \frac { 11 t } { 2 } } \right) + c _ { 2 } \sin \left( \sqrt { \frac { 11 t } { 2 } } \right) \right]
E) y(t)=cet2cos(11t2)y ( t ) = c e ^ { - \frac { t } { 2 } } \cos \left( \sqrt { \frac { 11 t } { 2 } } \right)
Question
Solve the differential equation. y+5y6y=0y ^ { \prime \prime } + 5 y ^ { \prime } - 6 y = 0

A) y=C1ex+C2e7xy = C _ { 1 } e ^ { x } + C _ { 2 } e ^ { - 7 x }
B) y=C1e6x+C2e6xy = C _ { 1 } e ^ { - 6 x } + C _ { 2 } e ^ { - 6 x }
C) y=C1ex3+C2e6x2y = \frac { C _ { 1 } e ^ { x } } { 3 } + \frac { C _ { 2 } e ^ { - 6 x } } { 2 }
D) y=C1ex+C2e6xy = C _ { 1 } e ^ { x } + C _ { 2 } e ^ { - 6 x }
E) None of these
Question
Solve the initial-value problem. y2y24y=0,y(1)=4,y(1)=5y ^ { \prime \prime } - 2 y ^ { \prime } - 24 y = 0 , y ( 1 ) = 4 , y ^ { \prime } ( 1 ) = 5 .

A) y(x)=110e4(x1)+123e6(x1)y ( x ) = \frac { 1 } { 10 } e ^ { 4 ( x - 1 ) } + \frac { 1 } { 23 } e ^ { - 6 ( x - 1 ) }
B) y(x)=110e4x123e6xy ( x ) = \frac { 1 } { 10 } e ^ { 4 x } - \frac { 1 } { 23 } e ^ { - 6 x }
C) y(x)=e6xe4xy ( x ) = e ^ { 6 x } - e ^ { - 4 x }
D) y(x)=2110e6(x1)+1910e4(x1)y ( x ) = \frac { 21 } { 10 } e ^ { 6 ( x - 1 ) } + \frac { 19 } { 10 } e ^ { - 4 ( x - 1 ) }
E) y(x)=110ex123exy ( x ) = \frac { 1 } { 10 } e ^ { x } - \frac { 1 } { 23 } e ^ { - x }
Question
Solve the initial-value problem. Solve the initial-value problem.  <div style=padding-top: 35px>
Question
Find f by solving the initial value problem. f(x)=8x2+6x+4f ^ { \prime \prime } ( x ) = 8 x ^ { 2 } + 6 x + 4 ; f(1)=7f ( - 1 ) = - 7 , f(1)=3f ^ { \prime } ( - 1 ) = - 3

A) 83\frac { 8 } { 3 } x4x ^ { 4 } +3+ 3 x3x ^ { 3 } + 4 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x - 10
B) 23\frac { 2 } { 3 } x4x ^ { 4 } ++ x3x ^ { 3 } + 2 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x 8- 8
C) 23\frac { 2 } { 3 } x4x ^ { 4 } ++ x3x ^ { 3 } + 2 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x 16- 16
D) 83\frac { 8 } { 3 } x4x ^ { 4 } +3+ 3 x3x ^ { 3 } + 4 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x - 5
Question
Solve the boundary-value problem, if possible. y+16y+64y=0,y(0)=0,y(1)=4y ^ { \prime \prime } + 16 y ^ { \prime } + 64 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 4

A) y(x)=4xe(8x+8)y ( x ) = 4 x e ^ { ( - 8 x + 8 ) }
B) y(x)=4e(8x8)y ( x ) = 4 e ^ { ( - 8 x - 8 ) }
C) y(x)=4xe(8x8)y ( x ) = 4 x e ^ { ( - 8 x - 8 ) }
D) y(x)=8xe(4x+4)y ( x ) = 8 x e ^ { ( - 4 x + 4 ) }
E) No solution
Question
Solve the initial-value problem. y+8y+41y=0,y(0)=1,y(0)=7y ^ { \prime \prime } + 8 y ^ { \prime } + 41 y = 0 , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 7

A) y=e5x(cos(5x)+115sin(5x))y = e ^ { 5 x } \left( \cos ( 5 x ) + \frac { 11 } { 5 } \sin ( 5 x ) \right)
B) y=e5x(cos(5x)+25sin(5x))y = e ^ { - 5 x } \left( \cos ( 5 x ) + \frac { 2 } { 5 } \sin ( 5 x ) \right)
C) y=e5x(cos(4x)+115sin(4x))y = e ^ { 5 x } \left( \cos ( 4 x ) + \frac { 11 } { 5 } \sin ( 4 x ) \right)
D) y=e4x(cos(5x)+115sin(5x))y = e ^ { - 4 x } \left( \cos ( 5 x ) + \frac { 11 } { 5 } \sin ( 5 x ) \right)
E) y=e4x(cos(5x)25sin(5x))y = e ^ { 4 x } \left( \cos ( 5 x ) - \frac { 2 } { 5 } \sin ( 5 x ) \right)
Question
Solve the initial-value problem. y+81y=0,y(π9)=0,y(π9)=8y ^ { \prime \prime } + 81 y = 0 , y \left( \frac { \pi } { 9 } \right) = 0 , y ^ { \prime } \left( \frac { \pi } { 9 } \right) = 8

A) y(x)=xsin(9x)y ( x ) = - x \sin ( 9 x )
B) y(x)=89xsin(9x)y ( x ) = \frac { 8 } { 9 } x \sin ( 9 x )
C) y(x)=89xsin(9x)y ( x ) = - \frac { 8 } { 9 } x \sin ( 9 x )
D) y(x)=89sin(9x)y ( x ) = - \frac { 8 } { 9 } \sin ( 9 x )
E) y(x)=89sin(9x)y ( x ) = \frac { 8 } { 9 } \sin ( 9 x )
Question
Solve the initial value problem. Solve the initial value problem.  <div style=padding-top: 35px>
Question
Solve the initial-value problem. y+2y3y=0,y(0)=2,y(0)=1y ^ { \prime \prime } + 2 y ^ { \prime } - 3 y = 0 , y ( 0 ) = 2 , y ^ { \prime } ( 0 ) = 1

A) y=14e2x+74e2xy = \frac { 1 } { 4 } e ^ { 2 x } + \frac { 7 } { 4 } e ^ { - 2 x }
B) y=ex+14e3xy = e ^ { x } + \frac { 1 } { 4 } e ^ { - 3 x }
C) y=e2x+14e2xy = e ^ { 2 x } + \frac { 1 } { 4 } e ^ { - 2 x }
D) y=74ex+14e3xy = \frac { 7 } { 4 } e ^ { x } + \frac { 1 } { 4 } e ^ { - 3 x }
E) None of these
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Question
Solve the boundary-value problem, if possible. Solve the boundary-value problem, if possible.  <div style=padding-top: 35px>
Question
Solve the initial-value problem. Solve the initial-value problem.  <div style=padding-top: 35px>
Question
Solve the differential equation. Solve the differential equation.  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/63
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 17: Second-Order Differential Equations
1
A spring with a mass of 2 kg has damping constant 14, and a force of A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t. N is required to keep the spring stretched A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t. m beyond its natural length. The spring is stretched 1m beyond its natural length and then released with zero velocity. Find the position x(t) of the mass at any time t.
2
Solve the differential equation using the method of variation of parameters. y+4y+4y=e2xx3y ^ { \prime \prime } + 4 y ^ { \prime } + 4 y = \frac { e ^ { - 2 x } } { x ^ { 3 } }

A) y(x)=e2x(c1+c212x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } \frac { 1 } { 2 x } \right)
B) y(x)=e2x(c1+c2x+12x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x + \frac { 1 } { 2 x } \right)
C) y(x)=e2x(c1+c2)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } \right)
D) y(x)=e2x(c1+c2x)+12xy ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x \right) + \frac { 1 } { 2 x }
E) y(x)=e2x(c1+c2x+c312x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x + c _ { 3 } \frac { 1 } { 2 x } \right)
y(x)=e2x(c1+c2x+12x)y ( x ) = e ^ { - 2 x } \left( c _ { 1 } + c _ { 2 } x + \frac { 1 } { 2 x } \right)
3
Use power series to solve the differential equation.. (x2+1)y+xyy=0\left( x ^ { 2 } + 1 \right) y ^ { \prime \prime } + x y ^ { \prime } - y = 0

A) y(x)=c0n=2(1)n1(2n3)!22n2n!(n2)!x2ny ( x ) = c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
B) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2n!(n2)!x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
C) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2(n2)!x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } ( n - 2 ) ! } x ^ { 2 n }
D) y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2n!(n2)!x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
E) y(x)=c0+c1x+c0x22+c0n=2(1)n+1(2n)!22n+2n!(n2)!x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 2 n ) ! } { 2 ^ { 2 n + 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
y(x)=c0+c1x+c0x22+c0n=2(1)n1(2n3)!22n2n!(n2)!x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
4
Use power series to solve the differential equation. y=25yy ^ { \prime \prime } = 25 y

A) y(x)=c1cosh5x+c2sinh5xy ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x
B) y(x)=c15coshx+c25sinhx+exy ( x ) = c _ { 1 } 5 \cosh x + c _ { 2 } 5 \sinh x + e ^ { x }
C) y(x)=5coshx+5sinhxy ( x ) = 5 \cosh x + 5 \sinh x
D) y(x)=c1cosh5x+c2sinh5x+exy ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x + e ^ { x }
E) y(x)=c1cosh5x+c2sinh5x+x2y ( x ) = c _ { 1 } \cosh 5 x + c _ { 2 } \sinh 5 x + x ^ { 2 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
5
A series circuit consists of a resistor R=32ΩR = 32 \Omega , an inductor with L=4HL = 4 H , a capacitor with C=0.003125 FC = 0.003125 \mathrm {~F} , and a 2424 -V battery. If the initial charge is 0.0008 C and the initial current is 0, find the current I(t) at time t.

A) I(t)=0.742e4tsin(8t)I ( t ) = 0.742 e ^ { - 4 t } \sin ( 8 t )
B) I(t)=e4t160cos(8t)I ( t ) = \frac { e ^ { - 4 t } } { 160 } \cos ( 8 t )
C) I(t)=e4t160cos(8t)12I ( t ) = \frac { e ^ { - 4 t } } { 160 } \cos ( 8 t ) - \frac { 1 } { 2 }
D) I(t)=0.742e8tI ( t ) = 0.742 e ^ { - 8 t }
E) I(t)=e4t160(0.003125cos(4t)+8sin(4t))12I ( t ) = \frac { e ^ { - 4 t } } { 160 } ( 0.003125 \cos ( 4 t ) + 8 \sin ( 4 t ) ) - \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
6
Use power series to solve the differential equation. y=7x3yy ^ { \prime } = 7 x ^ { 3 } y

A) y(x)=7ex44y ( x ) = 7 e ^ { \frac { x ^ { 4 } } { 4 } }
B) y(x)=ce7xy ( x ) = c e ^ { 7 x }
C) y(x)=ex44y ( x ) = e ^ { - \frac { x ^ { 4 } } { 4 } }
D) y(x)=ce7x44y ( x ) = c e ^ { - \frac { 7 x ^ { 4 } } { 4 } }
E) y(x)=ce7x44y ( x ) = c e ^ { \frac { 7 x ^ { 4 } } { 4 } }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
7
A series circuit consists of a resistor A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t. an inductor with L = A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t. H, a capacitor with
C = A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t. F, and a A series circuit consists of a resistor   an inductor with L =   H, a capacitor with C =   F, and a   -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t. -V battery. If the initial charge and current are both 0, find the charge Q(t) at time t.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
8
A spring has a mass of 11 kg and its damping constant is c=10c = 10 . The spring starts from its equilibrium position with a velocity of 11 m/s. Graph the position function for the spring constant k=20k = 20 .

A)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)
B)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)
C)  <strong>A spring has a mass of  1  kg and its damping constant is  c = 10  . The spring starts from its equilibrium position with a velocity of  1  m/s. Graph the position function for the spring constant  k = 20  .</strong> A)   B)   C)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
9
Use power series to solve the differential equation. (x10)y+2y=0( x - 10 ) y ^ { \prime } + 2 y = 0

A) y(x)=c0n=0xn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 10 ^ { n } }
B) y(x)=c0n=0n+110nxny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n + 1 } { 10 ^ { n } } x ^ { n }
C) y(x)=c0n=0(n+1)xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { ( n + 1 ) } { x ^ { n } }
D) y(x)=c0n=0(n+1)xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } ( n + 1 ) x ^ { n }
E) y(x)=c0n=0nxn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n x ^ { n } } { 10 ^ { n } }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
10
A spring with a 1616 -kg mass has natural length 0.80.8 m and is maintained stretched to a length of 1.21.2 m by a force of 19.619.6 N. If the spring is compressed to a length of 0.40.4 m and then released with zero velocity, find the position x(t)x ( t ) of the mass at any time tt .

A) x(t)=0.4e4tcos(0.4t)x ( t ) = - 0.4 e ^ { - 4 t } \cos ( 0.4 t )
B) x(t)=0.8sin(1.75t)x ( t ) = 0.8 \sin ( 1.75 t )
C) x(t)=0.4e4tcos(1.75t)x ( t ) = - 0.4 e ^ { - 4 t } \cos ( 1.75 t )
D) x(t)=0.4cos(1.75t)+0.4sin(1.75t)x ( t ) = - 0.4 \cos ( 1.75 t ) + 0.4 \sin ( 1.75 t )
E) x(t)=0.4cos(1.75t)x ( t ) = - 0.4 \cos ( 1.75 t )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
11
Suppose a spring has mass M and spring constant k and let ω=k/M\omega = \sqrt { k / M } . Suppose that the damping constant is so small that the damping force is negligible. If an external force F(t)=8F0cos(ωt)F ( t ) = 8 F _ { 0 } \cos ( \omega t ) is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to find the equation that describes the motion of the mass.

A) x(t)=c1cos(ωt)+c2sin(ωt)+F0t22Mωsin(ωt)x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } t ^ { - 2 } } { 2 M \omega } \sin ( \omega t )
B) x(t)=c1cos(ωt)+c2sin(ωt)+F0eωt2Mωx ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } e ^ { - \omega t } } { 2 M \omega }
C) x(t)=c1cos(ωt)+c2sin(ωt)+4F0tMωsin(ωt)x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { 4 F _ { 0 } t } { M \omega } \sin ( \omega t )
D) x(t)=F0t22Mωcos(ωt)x ( t ) = \frac { F _ { 0 } t ^ { 2 } } { 2 M \omega } \cos ( \omega t )
E) x(t)=F0t2Mω(c1cos(ωt)+c2sin(ωt))x ( t ) = \frac { F _ { 0 } t } { 2 M \omega } \left( c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
12
A spring with a mass of 2 kg has damping constant 14, and a force of A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. Find the mass that would produce critical damping. N is required to keep the spring stretched A spring with a mass of 2 kg has damping constant 14, and a force of   N is required to keep the spring stretched   m beyond its natural length. Find the mass that would produce critical damping. m beyond its natural length. Find the mass that would produce critical damping.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
13
A spring with a mass of 99 kg has damping constant 28 and spring constant 195195 . Find the damping constant that would produce critical damping.

A) c=c = 3619536 \sqrt { 195 }
B) c=c = 23402340
C) c=1959c = 195 \sqrt { 9 }
D) c=c = 9 195\sqrt { 195 }
E) c=c = 61956 \sqrt { 195 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
14
Use power series to solve the differential equation. yxyy=0,y(0)=7,y(0)=0y ^ { \prime \prime } - x y ^ { \prime } - y = 0 , y ( 0 ) = 7 , y ^ { \prime } ( 0 ) = 0

A) y(x)=7exy ( x ) = 7 e ^ { x }
B) y(x)=7ex22y ( x ) = 7 e ^ { - \frac { x ^ { 2 } } { 2 } }
C) y(x)=e7xy ( x ) = e ^ { 7 x }
D) y(x)=cex22y ( x ) = c e ^ { \frac { x ^ { 2 } } { 2 } }
E) y(x)=7ex22y ( x ) = 7 e ^ { \frac { x ^ { 2 } } { 2 } }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
15
A spring with a 3-kg mass is held stretched 0.9 m beyond its natural length by a force of 30 N. If the spring begins at its equilibrium position but a push gives it an initial velocity of 11 m/s, find the position x(t) of the mass after t seconds.

A) x(t)=1sin(7t)x ( t ) = 1 \sin ( 7 t )
B) x(t)=0.3sin(103t)+0.4cos(103t)x ( t ) = 0.3 \sin \left( \frac { 10 } { 3 } t \right) + 0.4 \cos \left( \frac { 10 } { 3 } t \right)
C) x(t)=0.3sin(103t)x ( t ) = 0.3 \sin \left( \frac { 10 } { 3 } t \right)
D) x(t)=0.4cos(103t)x ( t ) = 0.4 \cos \left( \frac { 10 } { 3 } t \right)
E) x(t)=103sin(7t)x ( t ) = \frac { 10 } { 3 } \sin ( 7 t )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
16
The solution of the initial-value problem x2y+xy+x2y=0,y(0)=1,y(0)=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0 is called a Bessel function of order 0. Solve the initial - value problem to find a power series expansion for the Bessel function.

A) y(x)=n=0(1)n+1nx2n122n1(n!)2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } \frac { n x ^ { 2 n - 1 } } { 2 ^ { 2 n - 1 } ( n ! ) ^ { 2 } }
B) y(x)=n=0(1)nxn2n(2n!)y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { n } } { 2 ^ { n } ( 2 n ! ) }
C) y(x)=n=0(1)nx2n22n(n!)2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }
D) y(x)=2x+n=0(1)nx2n(n!)2y ( x ) = 2 ^ { x } + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { ( n ! ) ^ { 2 } }
E) y(x)=x+n=0(1)nx2n22n(n!)2y ( x ) = x + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
17
A series circuit consists of a resistor R=96ΩR = 96 \Omega , an inductor with L=8HL = 8 \mathrm { H } , a capacitor with C=0.00125 FC = 0.00125 \mathrm {~F} , and a generator producing a voltage of E(t)=48cos(10t)E ( t ) = 48 \cos ( 10 t ) If the initial charge is Q=0.001CQ = 0.001 \mathrm { C } and the initial current is 0, find the charge Q(t)Q ( t ) at time t.

A) Q(t)=e6t(0.001cos(8t)0.06175sin(8t))+120sin(10t)Q ( t ) = e ^ { - 6 t } ( 0.001 \cos ( 8 t ) - 0.06175 \sin ( 8 t ) ) + \frac { 1 } { 20 } \sin ( 10 t )
B) Q(t)=e2t(0.051cos(2t)0.06175sin(2t))+120sin(10t)Q ( t ) = e ^ { - 2 t } ( 0.051 \cos ( 2 t ) - 0.06175 \sin ( 2 t ) ) + \frac { 1 } { 20 } \sin ( 10 t )
C) Q(t)=e6t(cos(6t)0.06175sin(6t))Q ( t ) = e ^ { - 6 t } ( \cos ( 6 t ) - 0.06175 \sin ( 6 t ) )
D) Q(t)=e3t(cos(5t)0.06175sin(5t))Q ( t ) = e ^ { - 3 t } ( \cos ( 5 t ) - 0.06175 \sin ( 5 t ) )
E) Q(t)=e6t(0.001cos(8t)0.06175sin(8t))Q ( t ) = e ^ { - 6 t } ( 0.001 \cos ( 8 t ) - 0.06175 \sin ( 8 t ) )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
18
A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.

A) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)
B) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)
C) <strong>A spring with a mass of 2 kg has damping constant 8 and spring constant 80. Graph the position function of the mass at time t if it starts at the equilibrium position with a velocity of 2 m/s.</strong> A)   B)   C)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
19
The figure shows a pendulum with length L and the angle θ\theta from the vertical to the pendulum. It can be shown that θ\theta , as a function of time, satisfies the nonlinear differential equation d2θdt2+gLsinθ=0\frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0 where g=9.8 m/s2g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }  is the acceleration due to gravity. For small values of \text { is the acceleration due to gravity. For small values of } θ\theta we can use the linear approximation sinθ=θ\sin \theta = \theta  and then the differential equation becomes linear. Find the equation \text { and then the differential equation becomes linear. Find the equation }  of motion of a pendulum with length 1 m if θ is initially 0.2rad and the initial \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }  angular velocity is \text { angular velocity is } dθdt=1rad/s\frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }  <strong>The figure shows a pendulum with length L and the angle  \theta  from the vertical to the pendulum. It can be shown that  \theta  , as a function of time, satisfies the nonlinear differential equation  \frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0  where  g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }   \text { is the acceleration due to gravity. For small values of }   \theta  we can use the linear approximation  \sin \theta = \theta   \text { and then the differential equation becomes linear. Find the equation }   \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }   \text { angular velocity is }   \frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }   </strong> A)  \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )  B)  \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )  C)  \theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )  D)  \theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )  E)  \theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )

A) θ(t)=0.2cos(9.8t)+19.8sin(9.8t)\theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )
B) θ(t)=0.2cos(9.8t)+2sin(9.8t)\theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )
C) θ(t)=2cos(9.8t)+19.8sin(9.8t)\theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )
D) θ(t)=19.8cos(9.8t)+0.2sin(9.8t)\theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )
E) θ(t)=0.2sin(9.8t)+19.8cos(9.8t)\theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
20
Use power series to solve the differential equation. y+x2y=0,y(0)=6,y(0)=0y ^ { \prime \prime } + x ^ { 2 } y = 0 , y ( 0 ) = 6 , y ^ { \prime } ( 0 ) = 0

A) y(x)=6n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = 6 - \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
B) y(x)=n=1(1)n6x4n4n(4n1)(4n4)(4n5)43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
C) y(x)=6+n=1(1)n6x4n4n(4n1)(4n4)(4n5)43y ( x ) = 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
D) y(x)=6+n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = - 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
E) y(x)=n=1(1)nx4n4n(4n1)(4n4)(4n5)43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
21
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
22
Solve the differential equation using the method of undetermined coefficients. Solve the differential equation using the method of undetermined coefficients.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
23
Solve the differential equation using the method of undetermined coefficients. y3y=sin9xy ^ { \prime \prime } - 3 y ^ { \prime } = \sin 9 x

A) y(x)=c1e3x+1270cos(6x)190sin(6x)y ( x ) = c _ { 1 } e ^ { 3 x } + \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
B) y(x)=c1+c2e3x+1270cos(6x)190sin(6x)y ( x ) = c _ { 1 } + c _ { 2 } e ^ { 3 x } + \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
C) y(x)=c1e3x+190cos(6x)+1270sin(6x)y ( x ) = c _ { 1 } e ^ { 3 x } + \frac { 1 } { 90 } \cos ( 6 x ) + \frac { 1 } { 270 } \sin ( 6 x )
D) y(x)=c1+c2e3x190sin(6x)y ( x ) = c _ { 1 } + c _ { 2 } e ^ { 3 x } - \frac { 1 } { 90 } \sin ( 6 x )
E) y(x)=1270cos(6x)190sin(6x)y ( x ) = \frac { 1 } { 270 } \cos ( 6 x ) - \frac { 1 } { 90 } \sin ( 6 x )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
24
Solve the differential equation using the method of undetermined coefficients. y+6y+9y=2+xy ^ { \prime \prime } + 6 y ^ { \prime } + 9 y = 2 + x

A) y(x)=c1e3x+c2xe3x+29x+427y ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x } + \frac { 2 } { 9 } x + \frac { 4 } { 27 }
B) y(x)=c1e3x+c2xe3xy ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x }
C) y(x)=c1e3x+c2xe3x+29xy ( x ) = c _ { 1 } e ^ { - 3 x } + c _ { 2 } x e ^ { - 3 x } + \frac { 2 } { 9 } x
D) y(x)=c1e3x+29x+427y ( x ) = c _ { 1 } e ^ { - 3 x } + \frac { 2 } { 9 } x + \frac { 4 } { 27 }
E) y(x)=c1xe3x+c2x2e3x+427xy ( x ) = c _ { 1 } x e ^ { - 3 x } + c _ { 2 } x ^ { 2 } e ^ { - 3 x } + \frac { 4 } { 27 } x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
25
Solve the differential equation using the method of variation of parameters. y+y=secx,π4<x<π2y ^ { \prime \prime } + y = \sec x , \frac { \pi } { 4 } < x < \frac { \pi } { 2 }

A) y(x)=c1+[c2+ln(sinx)]sinxy ( x ) = c _ { 1 } + \left[ c _ { 2 } + \ln ( \sin x ) \right] \sin x
B) y(x)=(c1+x)sinx+c2+ln(cosx)y ( x ) = \left( c _ { 1 } + x \right) \sin x + c _ { 2 } + \ln ( \cos x )
C) y(x)=π2sinx+[π2+ln(cosx)]cosxy ( x ) = \frac { \pi } { 2 } \sin x + \left[ \frac { \pi } { 2 } + \ln ( \cos x ) \right] \cos x
D) y(x)=[π4+ln(cosx)]cosxy ( x ) = \left[ \frac { \pi } { 4 } + \ln ( \cos x ) \right] \cos x
E) y(x)=(c1+x)sinx+[c2+ln(cosx)]cosxy ( x ) = \left( c _ { 1 } + x \right) \sin x + \left[ c _ { 2 } + \ln ( \cos x ) \right] \cos x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
26
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
27
Find a trial solution for the method of undetermined coefficients. Do not determine the coefficients. y+2y=1+xe4xy ^ { \prime \prime } + 2 y ^ { \prime } = 1 + x e ^ { - 4 x }

A) yp1(x)=Ayp2(x)=Bxe4x\begin{array} { l } y _ { p 1 } ( x ) = A \\y _ { p 2 } ( x ) = B x e ^ { 4 x }\end{array}
B) yp1(x)=Axyp2(x)=x(Ax+B)e4x\begin{array} { l } y _ { p 1 } ( x ) = A x \\y _ { p 2 } ( x ) = x ( A x + B ) e ^ { - 4 x }\end{array}
C) y71(x)=Ayp2(x)=x(A+B)e4x\begin{array} { l } y _ { 71 } ( x ) = A \\y _ { p 2 } ( x ) = x ( A + B ) e ^ { - 4 x }\end{array}
D) yp1(x)=Axyp2(x)=x2(Ax+B)e4x\begin{array} { l } y _ { p 1 } ( x ) = A x \\y _ { p 2 } ( x ) = x ^ { 2 } ( A x + B ) e ^ { - 4 x }\end{array}
E) yp1(x)=Ayp2(x)=x(A+Bx)e4x\begin{array} { l } y _ { p 1 } ( x ) = A \\y _ { p 2 } ( x ) = x ( A + B x ) e ^ { - 4 x }\end{array}
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
28
Solve the initial-value problem using the method of undetermined coefficients. Solve the initial-value problem using the method of undetermined coefficients.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
29
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
30
Solve the differential equation using the method of undetermined coefficients. y+5y+6y=x2y ^ { \prime \prime } + 5 y ^ { \prime } + 6 y = x ^ { 2 }

A) y(x)=c1e2x+c2e3xy ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x }
B) y(x)=16x2518x+19108y ( x ) = \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 }
C) y(x)=c1e2x+c2e3x+16x2y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 1 } { 6 } x ^ { 2 }
D) y(x)=c1e2x+c2e3x+16x2518x+19108y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 }
E) y(x)=c1e2x+c2e3x+9108c3y ( x ) = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 3 x } + \frac { 9 } { 108 } c _ { 3 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
31
Graph the particular solution and several other solutions. 2y+3y+y=2+cos2x2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x

A)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)
B)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)
C)  <strong>Graph the particular solution and several other solutions.  2 y ^ { \prime \prime } + 3 y ^ { \prime } + y = 2 + \cos 2 x </strong> A)   B)   C)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
32
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
33
Solve the differential equation using the method of variation of parameters. y4y+3y=2sinxy ^ { \prime \prime } - 4 y ^ { \prime } + 3 y = 2 \sin x

A) y(x)=c1sinx+c25x+210sinxy ( x ) = c _ { 1 } \sin x + \frac { c _ { 2 } } { 5 } x + \frac { 2 } { 10 } \sin x
B) y(x)=c1e3x+c2ex+25sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \sin x
C) y(x)=c1sin3x+c24x+cos3xy ( x ) = c _ { 1 } \sin 3 x + \frac { c _ { 2 } } { 4 } x + \cos 3 x
D) y(x)=c1e3x+c2ex+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 10 } \sin x
E) y(x)=c1e3x+c2ex+25cosx+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \cos x + \frac { 2 } { 10 } \sin x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
34
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the initial-value problem using the method of undetermined coefficients. Solve the initial-value problem using the method of undetermined coefficients.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the differential equation using the method of variation of parameters. Solve the differential equation using the method of variation of parameters.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
37
Find a trial solution for the method of undetermined coefficients. Do not determine the coefficients. y+3y+5y=x4e9xy ^ { \prime \prime } + 3 y ^ { \prime } + 5 y = x ^ { 4 } e ^ { 9 x }

A) yy(x)=(Ax4+Bx2+C)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B x ^ { 2 } + C \right) e ^ { - 9 x }
B) yy(x)=(Ax3+Bx2+Cx+D)e9xy _ { y } ( x ) = \left( A x ^ { 3 } + B x ^ { 2 } + C x + D \right) e ^ { 9 x }
C) yy(x)=(Ax4+B)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B \right) e ^ { 9 x }
D) yy(x)=Ax9y _ { y } ( x ) = A x ^ { 9 }
E) yy(x)=(Ax4+Bx3+Cx2+Dx+E)e9xy _ { y } ( x ) = \left( A x ^ { 4 } + B x ^ { 3 } + C x ^ { 2 } + D x + E \right) e ^ { 9 x }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the differential equation using the method of undetermined coefficients. Solve the differential equation using the method of undetermined coefficients.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
39
Solve the differential equation using the method of variation of parameters. yy=e2xy ^ { \prime \prime } - y ^ { \prime \prime } = e ^ { 2 x }

A) y(x)=c1+c2ex+xe2x2y ( x ) = c _ { 1 } + c _ { 2 } e ^ { x } + \frac { x e ^ { 2 x } } { 2 }
B) y(x)=c1+c2xex+2e2xy ( x ) = c _ { 1 } + c _ { 2 } x e ^ { x } + 2 e ^ { 2 x }
C) y(x)=c1+xe2xy ( x ) = c _ { 1 } + x e ^ { 2 x }
D) y(x)=c1+c2xe2xy ( x ) = c _ { 1 } + c _ { 2 } x e ^ { 2 x }
E) y(x)=c1+(1+x)xe2xy ( x ) = c _ { 1 } + ( 1 + x ) x e ^ { 2 x }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
40
Solve the differential equation. y4y+13y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 13 y = 0

A) y(x)=ce2xcos(3x)y ( x ) = c e ^ { 2 x } \cos ( 3 x )
B) y(x)=e2x(c1cos(3x)+c2xsin(3x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
C) y(x)=e2x(c1cos(3x)+c2sin(3x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
D) y(x)=e3x(c1cos(2x)+c2sin(2x))y ( x ) = e ^ { 3 x } \left( c _ { 1 } \cos ( 2 x ) + c _ { 2 } \sin ( 2 x ) \right)
E) y(x)=e2x(c1cos(2x)+c2xsin(2x))y ( x ) = e ^ { 2 x } \left( c _ { 1 } \cos ( 2 x ) + c _ { 2 } x \sin ( 2 x ) \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
42
Solve the differential equation. y8y+25y=0y ^ { \prime \prime } - 8 y ^ { \prime } + 25 y = 0

A) y(x)=ce4xcos(3x)y ( x ) = c e ^ { 4 x } \cos ( 3 x )
B) y(x)=e4x(c1cos(3x)+c2xsin(3x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
C) y(x)=e4x(c1cos(4x)+c2xsin(4x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } x \sin ( 4 x ) \right)
D) y(x)=e3x(c1cos(4x)+c2sin(4x))y ( x ) = e ^ { 3 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } \sin ( 4 x ) \right)
E) y(x)=e4x(c1cos(3x)+c2sin(3x))y ( x ) = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
43
Solve the boundary-value problem, if possible. Solve the boundary-value problem, if possible.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
44
Solve the differential equation. y8y+25y=0y ^ { \prime \prime } - 8 y ^ { \prime } + 25 y = 0

A) y=c1cos(3x)+c2xsin(3x)y = c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x )
B) y=ce4xcos(3x)y = c e ^ { 4 x } \cos ( 3 x )
C) y=e4x(c1cos(4x)+c2xsin(4x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 4 x ) + c _ { 2 } x \sin ( 4 x ) \right)
D) y=e4x(c1cos(3x)+c2sin(3x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } \sin ( 3 x ) \right)
E) y=e4x(c1cos(3x)+c2xsin(3x))y = e ^ { 4 x } \left( c _ { 1 } \cos ( 3 x ) + c _ { 2 } x \sin ( 3 x ) \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
45
Solve the differential equation. 4y+y=04 y ^ { \prime \prime } + y = 0

A) y(x)=c1cos(x4)+c2sin(x2)y ( x ) = c _ { 1 } \cos \left( - \frac { x } { 4 } \right) + c _ { 2 } \sin \left( - \frac { x } { 2 } \right)
B) y(x)=c1cos(4x)c2sin(4x)y ( x ) = c _ { 1 } \cos ( 4 x ) - c _ { 2 } \sin ( 4 x )
C) y(x)=c1cos(2x)+c2sin(2x)y ( x ) = c _ { 1 } \cos ( 2 x ) + c _ { 2 } \sin ( 2 x )
D) y(x)=c1cos(2x)+c2sin(2x)y ( x ) = c _ { 1 } \cos ( - 2 x ) + c _ { 2 } \sin ( - 2 x )
E) y(x)=c1cos(x2)+c2sin(x2)y ( x ) = c _ { 1 } \cos \left( \frac { x } { 2 } \right) + c _ { 2 } \sin \left( \frac { x } { 2 } \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
46
Solve the boundary-value problem, if possible. y+5y36y=0,y(0)=0,y(2)=1y ^ { \prime \prime } + 5 y ^ { \prime } - 36 y = 0 , y ( 0 ) = 0 , y ( 2 ) = 1

A) y(x)=(e8e18)1(e4xe9x)y ( x ) = \left( e ^ { 8 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { 4 x } - e ^ { - 9 x } \right)
B) y(x)=(e4e18)(e4xe9x)y ( x ) = \left( e ^ { 4 } - e ^ { - 18 } \right) \left( e ^ { 4 x } - e ^ { - 9 x } \right)
C) y(x)=(e9e18)1(exe9x)y ( x ) = \left( e ^ { 9 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { x } - e ^ { - 9 x } \right)
D) y(x)=(e4e18)1(e4xe9x)y ( x ) = \left( e ^ { 4 } - e ^ { - 18 } \right) ^ { - 1 } \left( e ^ { 4 x } - e ^ { - 9 x } \right)
E) No solution
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the initial-value problem. Solve the initial-value problem.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
48
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
50
Solve the differential equation. d2ydt2+dydt+3y=0\frac { d ^ { 2 } y } { d t ^ { 2 } } + \frac { d y } { d t } + 3 y = 0

A) y(t)=tet2[c1cos(11t2)+c2sin(11t2)]y ( t ) = t e ^ { \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { 11 } t } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { 11 } t } { 2 } \right) \right]
B) y(t)=e22[c1cos(t2)+c2sin(t2)]y ( t ) = e ^ { \frac { \sqrt { 2 } } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { t } } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { t } } { 2 } \right) \right]
C) y(t)=et2[c1cos(11t2)+c2sin(11t2)]y ( t ) = e ^ { - \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \frac { \sqrt { 11 } t } { 2 } \right) + c _ { 2 } \sin \left( \frac { \sqrt { 11 } t } { 2 } \right) \right]
D) y(t)=t2et2[c1cos(11t2)+c2sin(11t2)]y ( t ) = t ^ { 2 } e ^ { - \frac { t } { 2 } } \left[ c _ { 1 } \cos \left( \sqrt { \frac { 11 t } { 2 } } \right) + c _ { 2 } \sin \left( \sqrt { \frac { 11 t } { 2 } } \right) \right]
E) y(t)=cet2cos(11t2)y ( t ) = c e ^ { - \frac { t } { 2 } } \cos \left( \sqrt { \frac { 11 t } { 2 } } \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
51
Solve the differential equation. y+5y6y=0y ^ { \prime \prime } + 5 y ^ { \prime } - 6 y = 0

A) y=C1ex+C2e7xy = C _ { 1 } e ^ { x } + C _ { 2 } e ^ { - 7 x }
B) y=C1e6x+C2e6xy = C _ { 1 } e ^ { - 6 x } + C _ { 2 } e ^ { - 6 x }
C) y=C1ex3+C2e6x2y = \frac { C _ { 1 } e ^ { x } } { 3 } + \frac { C _ { 2 } e ^ { - 6 x } } { 2 }
D) y=C1ex+C2e6xy = C _ { 1 } e ^ { x } + C _ { 2 } e ^ { - 6 x }
E) None of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
52
Solve the initial-value problem. y2y24y=0,y(1)=4,y(1)=5y ^ { \prime \prime } - 2 y ^ { \prime } - 24 y = 0 , y ( 1 ) = 4 , y ^ { \prime } ( 1 ) = 5 .

A) y(x)=110e4(x1)+123e6(x1)y ( x ) = \frac { 1 } { 10 } e ^ { 4 ( x - 1 ) } + \frac { 1 } { 23 } e ^ { - 6 ( x - 1 ) }
B) y(x)=110e4x123e6xy ( x ) = \frac { 1 } { 10 } e ^ { 4 x } - \frac { 1 } { 23 } e ^ { - 6 x }
C) y(x)=e6xe4xy ( x ) = e ^ { 6 x } - e ^ { - 4 x }
D) y(x)=2110e6(x1)+1910e4(x1)y ( x ) = \frac { 21 } { 10 } e ^ { 6 ( x - 1 ) } + \frac { 19 } { 10 } e ^ { - 4 ( x - 1 ) }
E) y(x)=110ex123exy ( x ) = \frac { 1 } { 10 } e ^ { x } - \frac { 1 } { 23 } e ^ { - x }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
53
Solve the initial-value problem. Solve the initial-value problem.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
54
Find f by solving the initial value problem. f(x)=8x2+6x+4f ^ { \prime \prime } ( x ) = 8 x ^ { 2 } + 6 x + 4 ; f(1)=7f ( - 1 ) = - 7 , f(1)=3f ^ { \prime } ( - 1 ) = - 3

A) 83\frac { 8 } { 3 } x4x ^ { 4 } +3+ 3 x3x ^ { 3 } + 4 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x - 10
B) 23\frac { 2 } { 3 } x4x ^ { 4 } ++ x3x ^ { 3 } + 2 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x 8- 8
C) 23\frac { 2 } { 3 } x4x ^ { 4 } ++ x3x ^ { 3 } + 2 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x 16- 16
D) 83\frac { 8 } { 3 } x4x ^ { 4 } +3+ 3 x3x ^ { 3 } + 4 x2x ^ { 2 } +23+ \frac { 2 } { 3 } x - 5
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
55
Solve the boundary-value problem, if possible. y+16y+64y=0,y(0)=0,y(1)=4y ^ { \prime \prime } + 16 y ^ { \prime } + 64 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 4

A) y(x)=4xe(8x+8)y ( x ) = 4 x e ^ { ( - 8 x + 8 ) }
B) y(x)=4e(8x8)y ( x ) = 4 e ^ { ( - 8 x - 8 ) }
C) y(x)=4xe(8x8)y ( x ) = 4 x e ^ { ( - 8 x - 8 ) }
D) y(x)=8xe(4x+4)y ( x ) = 8 x e ^ { ( - 4 x + 4 ) }
E) No solution
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
56
Solve the initial-value problem. y+8y+41y=0,y(0)=1,y(0)=7y ^ { \prime \prime } + 8 y ^ { \prime } + 41 y = 0 , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 7

A) y=e5x(cos(5x)+115sin(5x))y = e ^ { 5 x } \left( \cos ( 5 x ) + \frac { 11 } { 5 } \sin ( 5 x ) \right)
B) y=e5x(cos(5x)+25sin(5x))y = e ^ { - 5 x } \left( \cos ( 5 x ) + \frac { 2 } { 5 } \sin ( 5 x ) \right)
C) y=e5x(cos(4x)+115sin(4x))y = e ^ { 5 x } \left( \cos ( 4 x ) + \frac { 11 } { 5 } \sin ( 4 x ) \right)
D) y=e4x(cos(5x)+115sin(5x))y = e ^ { - 4 x } \left( \cos ( 5 x ) + \frac { 11 } { 5 } \sin ( 5 x ) \right)
E) y=e4x(cos(5x)25sin(5x))y = e ^ { 4 x } \left( \cos ( 5 x ) - \frac { 2 } { 5 } \sin ( 5 x ) \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
57
Solve the initial-value problem. y+81y=0,y(π9)=0,y(π9)=8y ^ { \prime \prime } + 81 y = 0 , y \left( \frac { \pi } { 9 } \right) = 0 , y ^ { \prime } \left( \frac { \pi } { 9 } \right) = 8

A) y(x)=xsin(9x)y ( x ) = - x \sin ( 9 x )
B) y(x)=89xsin(9x)y ( x ) = \frac { 8 } { 9 } x \sin ( 9 x )
C) y(x)=89xsin(9x)y ( x ) = - \frac { 8 } { 9 } x \sin ( 9 x )
D) y(x)=89sin(9x)y ( x ) = - \frac { 8 } { 9 } \sin ( 9 x )
E) y(x)=89sin(9x)y ( x ) = \frac { 8 } { 9 } \sin ( 9 x )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
58
Solve the initial value problem. Solve the initial value problem.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
59
Solve the initial-value problem. y+2y3y=0,y(0)=2,y(0)=1y ^ { \prime \prime } + 2 y ^ { \prime } - 3 y = 0 , y ( 0 ) = 2 , y ^ { \prime } ( 0 ) = 1

A) y=14e2x+74e2xy = \frac { 1 } { 4 } e ^ { 2 x } + \frac { 7 } { 4 } e ^ { - 2 x }
B) y=ex+14e3xy = e ^ { x } + \frac { 1 } { 4 } e ^ { - 3 x }
C) y=e2x+14e2xy = e ^ { 2 x } + \frac { 1 } { 4 } e ^ { - 2 x }
D) y=74ex+14e3xy = \frac { 7 } { 4 } e ^ { x } + \frac { 1 } { 4 } e ^ { - 3 x }
E) None of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
60
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
61
Solve the boundary-value problem, if possible. Solve the boundary-value problem, if possible.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
62
Solve the initial-value problem. Solve the initial-value problem.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the differential equation. Solve the differential equation.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 63 flashcards in this deck.