Deck 13: Vector Functions

Full screen (f)
exit full mode
Question
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
Use Space or
up arrow
down arrow
to flip the card.
Question
The following table gives coordinates of a particle moving through space along a smooth curve. txyz0.55.89.14.3112.614.916.81.525.621.229.4239.239.537.92.542.442.443\begin{array} { | c | c | c | c | } \hline \mathbf { t } & x & y & z \\\hline 0.5 & 5.8 & 9.1 & 4.3 \\\hline 1 & 12.6 & 14.9 & 16.8 \\\hline 1.5 & 25.6 & 21.2 & 29.4 \\\hline 2 & 39.2 & 39.5 & 37.9 \\\hline 2.5 & 42.4 & 42.4 & 43 \\\hline\end{array} Find the average velocity over the time interval [2.5,1.5][ 2.5,1.5 ] .

A) v=13.6i+21.12j+16.8k\mathbf { v } = 13.6 \mathbf { i } + 21.12 \mathbf { j } + 16.8 \mathbf { k }
B) v=13.6i+16.8j+16.8kv = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 16.8 \mathbf { k }
C) v=13.6i+16.8j+13.6k\mathbf { v } = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 13.6 \mathbf { k }
D) v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
E) v=21.12i+21.12j+13.6k\mathbf { v } = 21.12 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
Question
What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

A) F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
B) F(t)=30mt2i+20mj+42mtk\mathrm { F } ( t ) = 30 m t ^ { 2 } \mathbf { i } + 20 m \mathbf { j } + 42 m t \mathbf { k }
C) F(t)=42mti+42mj+20mtk\mathrm { F } ( t ) = 42 m t \mathbf { i } + 42 m \mathbf { j } + 20 m t \mathbf { k }
D) F(t)=mt2i+5mtj+10mt2k\mathrm { F } ( t ) = m t ^ { 2 } \mathbf { i } + 5 m t \mathbf { j } + 10 m t ^ { 2 } \mathbf { k }
E) F(t)=30mti+20mj+tk\mathrm { F } ( t ) = 30 m t \mathbf { i } + 20 m \mathbf { j } + t \mathbf { k }
Question
Find the acceleration of a particle with the following position function. r(t)={2t22,4t}\mathbf { r } ( t ) = \left\{ 2 t ^ { 2 } - 2,4 t \right\}

A) a(t)=4i\mathbf { a } ( t ) = 4 \mathbf { i }
B) a(t)=2ti+2j\mathbf { a } ( t ) = 2 t \mathbf { i } + 2 \mathbf { j }
C) a(t)=(2+4t)i2j\mathbf { a } ( t ) = ( 2 + 4 t ) \mathbf { i } - 2 \mathbf { j }
D) a(t)=2ij\mathbf { a } ( t ) = 2 \mathbf { i } - \mathbf { j }
E) a(t)=4ti+2j\mathbf { a } ( t ) = 4 t \mathbf { i } + 2 \mathbf { j }
Question
A force with magnitude 1212 N acts directly upward from the xy-plane on an object with mass 22 kg. The object starts at the origin with initial velocity v(0)=3i2j\mathbf { v } ( 0 ) = 3 \mathbf { i } - 2 \mathbf { j } . Find its position function.

A) r(t)=2t2i3t2j+12t3k\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - 3 t ^ { 2 } \mathbf { j } + 12 t ^ { 3 } \mathbf { k }
B) r(t)=2ti4tj+t2k\mathbf { r } ( t ) = 2 t \mathbf { i } - 4 t \mathbf { j } + t ^ { 2 } \mathbf { k }
C) r(t)=3ti2tj+\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j } + 33  k \text { k }
D) r(t)=3ti2tj\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j }
E) r(t)=5t3i4j+2k\mathbf { r } ( t ) = 5 t ^ { 3 } \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k }
Question
A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

A) d43.3d \approx 43.3 km
B) d350d \approx 350 km
C) d63.3d \approx 63.3 km
D) d433d \approx 433 km
E) d53.3d \approx 53.3 km
Question
Find the velocity of a particle with the given position function. r(t)=11e9ti+9e13tj\mathbf { r } ( t ) = 11 e ^ { 9 t } \mathbf { i } + 9 e ^ { - 13 t } \mathbf { j }

A) v(t)=e9ti+117e13tj\mathbf { v } ( t ) = e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
B) v(t)=99e9ti117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
C) v(t)=11e9ti+e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } + e ^ { - 13 t } \mathbf { j }
D) v(t)=11e9ti117e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
E) v(t)=99e9ti+117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
Question
A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

A) aT=5ta _ { T } = 5 t
B) aT=542ta _ { T } = 542 t
C) aT=42t+5a _ { T } = 42 t + 5
D) aT=55ta _ { T } = - 55 t
E) aT=42ta _ { T } = 42 t
Question
A particle moves with position function A particle moves with position function   . Find the acceleration of the particle.<div style=padding-top: 35px> . Find the acceleration of the particle.
Question
Find the position vector of a particle that has the given acceleration and the given initial velocity and position. Find the position vector of a particle that has the given acceleration and the given initial velocity and position.  <div style=padding-top: 35px>
Question
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et(cos8t,sin8t,8)\mathbf { r } ( t ) = e ^ { t } ( \cos 8 t , \sin 8 t , 8 )

A) aT=65eta _ { \mathbf { T } } = \sqrt { 65 } e ^ { t } , aN=865eta _ { \mathrm { N } } = 8 \sqrt { 65 } e ^ { t }
B) aT=865eta _ { \mathbf { T } } = 8 \sqrt { 65 } e ^ { t } , aN=65eta _ { \mathrm { N } } = \sqrt { 65 } e ^ { t }
C) aT=65eta _ { \mathbf { T } } = 65 e ^ { t } , aN(t)=8eta _ { \mathrm { N } } ( t ) = 8 e ^ { t }
D) aT=8eta _ { \mathbf { T } } = 8 e ^ { t } , aN=65eta _ { \mathrm { N } } = 65 e ^ { t }
Question
Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

A) a(t)=9sinti9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } - 9 \cos t \mathbf { j }
B) a(t)=9sinti+9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 9 \cos t \mathbf { j }
C) a(t)=9sinti+10costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 10 \cos t \mathbf { k }
D) a(t)=9sinti+8costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 8 \cos t \mathbf { k }
E) a(t)=9sinti10tk\mathbf { a } ( t ) = 9 \sin t \mathbf { i } - 10 t \mathbf { k }
Question
A mortar shell is fired with a muzzle speed of 325 ft/sec. Find the angle of elevation of the mortar if the shell strikes a target located 1500 ft away. Round your answer to 2 decimal places.

A) 12.2212.22 ^ { \circ }
B) 0.640.64 ^ { \circ }
C) 13.5113.51 ^ { \circ }
D) 0.240.24 ^ { \circ }
Question
Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

A) v(t)=1+100t2+100t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 100 t ^ { 10 } }
B) v(t)=1+100t+324t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + 324 t ^ { 9 } }
C) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = 1 + 100 t ^ { 2 } + 324 t ^ { 10 }
D) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 324 t ^ { 10 } }
E) v(t)=1+100t+t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + t ^ { 9 } }
Question
A particle moves with position function A particle moves with position function   . Find the normal component of the acceleration vector.<div style=padding-top: 35px> .
Find the normal component of the acceleration vector.
Question
Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

A) v(t)=5(e5t+e5t)| v ( t ) | = 5 \left( e ^ { 5 t } + e ^ { - 5 t } \right)
B) v(t)=(e5t+e5t)| v ( t ) | = \left( e ^ { 5 t } + e ^ { - 5 t } \right)
C) v(t)=5+5et+5et| v ( t ) | = \sqrt { 5 + 5 e ^ { t } + 5 e ^ { - t } }
D) v(t)=5(et+et)| v ( t ) | = 5 \left( e ^ { t } + e ^ { - t } \right)
E) v(t)=5+e5t+e50t| v ( t ) | = \sqrt { 5 + e ^ { 5 t } + e ^ { - 50 t } }
Question
A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 3030 m away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

A) v017 m/sv _ { 0 } \approx 17 \mathrm {~m} / \mathrm { s }
B) v022 m/sv _ { 0 } \approx 22 \mathrm {~m} / \mathrm { s } .
C) v042 m/sv _ { 0 } \approx 42 \mathrm {~m} / \mathrm { s } .
D) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s }
E) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s } .
Question
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

A) aT=0a _ { \mathbf { T } } = 0 aN=3a _ { \mathrm { N } } = 3
B) aT=5a _ { \mathbf { T } } = 5 aN=3a _ { \mathrm { N } } = 3
C) aT=0a _ { \mathbf { T } } = 0 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
D) aT=5a _ { \mathbf { T } } = 5 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
Question
The position function of a particle is given by r(t)=5t2,5t,5t2100t\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\rangle When is the speed a minimum?

A) t=5t = 5
B) t=30t = 30
C) t=20t = 20
D) t=0t = 0
E) t=10t = 10
Question
Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 \mathbf { k } , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

A) v(t)=12ij+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - \mathbf { j } + 3 t \mathbf { k }
B) v(t)=12i7j+tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + t \mathbf { k }
C) v(t)=(12t9)i+7tk\mathbf { v } ( t ) = ( 12 t - 9 ) \mathbf { i } + 7 t \mathbf { k }
D) v(t)=i7j+3tk\mathbf { v } ( t ) = \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
E) v(t)=12i7j+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
Question
Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

A) 43\frac { 4 } { 3 }
B) 34\frac { 3 } { 4 }
C) 5116\frac { 51 } { 16 }
D) 1651\frac { 16 } { 51 }
Question
Find the scalar tangential and normal components of acceleration of a particle with position vector Find the scalar tangential and normal components of acceleration of a particle with position vector  <div style=padding-top: 35px>
Question
Find the curvature of y=x4y = x ^ { 4 } .

A) 12x2(116x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 - 16 x ^ { 6 } \right) ^ { 3 / 2 } }
B) 12x2(1+16x6)1/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
C) x2(1+x6)3/2\frac { | x | ^ { 2 } } { \left( 1 + x ^ { 6 } \right) ^ { 3 / 2 } }
D) x2(1+16x6)1/2\frac { | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
E) 12x2(1+16x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 3 / 2 } }
Question
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
Question
A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of   . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?<div style=padding-top: 35px> .
a. What are the scalar tangential and normal components of acceleration of the projectile?
b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?
Question
Find the velocity and position vectors of an object with acceleration Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px> initial velocity Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px> and initial position Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px>
Question
Find the length of the curve r(t)=2ti+t2j+lntk\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } 1te31 \leq t \leq e ^ { 3 }

A) e6e ^ { 6 }
B) e3e ^ { 3 }
C) e6+2e ^ { 6 } + 2
D) e3+2e ^ { 3 } + 2
Question
For the curve given by r(t)=(4sint,5t,4cost)\mathbf { r } ( t ) = (4 \sin t , 5 t , 4 \mathrm { cos } t ) , find the unit normal vector. a(t)=2k,v(0)=10i9j\mathbf { a } ( t ) = 2 \mathbf { k } , \mathbf { v } ( 0 ) = 10 \mathbf { i } - 9 \mathbf { j }

A) (2sint,5,2cost)( 2 \sin t , 5 , - 2 \cos t)
B) (2sint,0,2cost)(- 2 \sin t , 0 , - 2 \cos t )
C) (sint29,0,cost29)\left( - \frac { \sin t } { \sqrt { 29 } } , 0 , - \frac { \cos t } { \sqrt { 29 } } \right)
D) (29sint,0,29cost)( \sqrt { 29 } \sin t , 0 , - \sqrt { 29 } \mathrm { cost } )
E) None of these
Question
Find the length of the curve r(t)=8ti+3costj+3sintk\mathbf { r } ( t ) = 8 t \mathbf { i } + 3 \cos t \mathbf { j } + 3 \sin t \mathbf { k } 0t2π0 \leq t \leq 2 \pi

A) 2732 \sqrt { 73 } π\pi
B) 73\sqrt { 73 } π\pi
C) 11\sqrt { 11 } π\pi
D) 2112 \sqrt { 11 } π\pi
Question
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px> for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px>
Question
Let C be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to C corresponding to t. The plane determined by T and N is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1

A) z=2z = 2
B) y=3y = 3
C) 2x+3y+2z=12 x + 3 y + 2 z = 1
D) x=2x = 2
Question
Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

A) r(t(s))=(53126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 - \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
B) r(t(s))=(5+3126s)i+(89126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 - \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
C) r(t(s))=(5+3126s)i+(8+9126s)j+(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } + ( 6 s ) \mathbf { k }
D) r(t(s))=(5+3126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
E) r(t(s))=(5+3126s)i+(8+9126s)j(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - ( 6 s ) \mathbf { k }
Question
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   .<div style=padding-top: 35px> .
Question
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
Question
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> Sketch the graph of C, and show Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> for Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px>
Question
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   .<div style=padding-top: 35px> .
Question
A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of <strong>A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of   </strong> A) Find the range of the projectile. B) What is the maximm height attained by the projectile? C) What is the speed of the projectile at impact? Round your answers to the nearest integer. <div style=padding-top: 35px>

A) Find the range of the projectile.
B) What is the maximm height attained by the projectile?
C) What is the speed of the projectile at impact?
Round your answers to the nearest integer.
Question
Find the length of the curve r(t)=2titj+tk\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } 2t1.- 2 \leq t \leq 1 .

A) 363 \sqrt { 6 }
B) 6\sqrt { 6 }
C) 262 \sqrt { 6 }
D) 666 \sqrt { 6 }
Question
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
Question
Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } .

A) 1
B) 2102 \sqrt { 10 }
C) 11
D) 0
Question
Find parametric equations for the tangent line to the curve with parametric equations x=2tx = 2 t y=7t2y = 7 t ^ { 2 } z=4t3z = 4 t ^ { 3 } at the point with t=1t = 1

A) x=2+2tx = 2 + 2 t y=7+14ty = 7 + 14 t z=4+12tz = 4 + 12 t
B) x=2+2tx = 2 + 2 t y=7+7ty = 7 + 7 t z=4+4tz = 4 + 4 t
C) x=1+2tx = 1 + 2 t y=1+7ty = 1 + 7 t z=1+4tz = 1 + 4 t
D) x=1+2tx = 1 + 2 t y=1+14ty = 1 + 14 t z=1+12tz = 1 + 12 t
Question
Evaluate the integral. (e9ti+14tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 14 t \mathbf { j } + \ln t \mathbf { k } \right) d t

A) e9t9i+7t2j+t(lnt1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t - 1 ) \mathbf { k } + C
B) e9ti+7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
C) e9t9i+7t2j+t(lnt+9)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 9 ) \mathbf { k } + C
D) e9t9i7t2j+t(lnt+1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 1 ) \mathbf { k } + C
E) e9ti7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
Question
Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=5i+8tj6t2k\mathbf { r } ^ { \prime } ( t ) = 5 \mathbf { i } + 8 t \mathbf { j } - 6 t ^ { 2 } \mathbf { k } r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j }

A) (5t+1)i+(4t2+1)j2t3k( 5 t + 1 ) \mathbf { i } + \left( 4 t ^ { 2 } + 1 \right) \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
B) (5t+1)i+(8t2+1)j6t3k( 5 t + 1 ) \mathbf { i } + \left( 8 t ^ { 2 } + 1 \right) \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
C) 5ti+4t2j2t3k5 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
D) 5ti+8t2j6t3k5 t \mathbf { i } + 8 t ^ { 2 } \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
Question
The figure shows a curve CC given by a vector function r(t)\mathbf { r } ( t ) . Choose the correct expression for r(4)\mathbf { r } ^ { \prime } ( 4 ) .  <strong>The figure shows a curve  C  given by a vector function  \mathbf { r } ( t )  . Choose the correct expression for  \mathbf { r } ^ { \prime } ( 4 )  .  </strong> A)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }  B)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }  C)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }  D)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }  E)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }  <div style=padding-top: 35px>

A) limh0r(4h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }
B) limh0r(4+h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }
C) limh0r(4+h)r(h)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }
D) limh0r(4h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }
E) limh0r(4+h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }
Question
If
r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t ) .

A) 0,110t9,72t7\left\langle 0,110 t ^ { 9 } , 72 t ^ { 7 } \right\rangle
B) 0,72t6,110t8\left\langle 0,72 t ^ { 6 } , 110 t ^ { 8 } \right\rangle
C) 0,72t7,110t9\left\langle0,72 t ^ { 7 } , 110 t ^ { 9 } \right\rangle
D) 0,110t8,72t6\left\langle0,110 t ^ { 8 } , 72 t ^ { 6 } \right\rangle
E) 1,9t6,11t8\left\langle 1,9 t ^ { 6 } , 11 t ^ { 8 } \right\rangle
Question
Find equations of the normal plane to Find equations of the normal plane to   at the point (2, 4, 8).<div style=padding-top: 35px> at the point (2, 4, 8).
Question
Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=9e9ti+9etj+etk\mathbf { r } ^ { t } ( t ) = 9 e ^ { 9 t } \mathbf { i } + 9 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } r(0)=ij+9k\mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 9 \mathbf { k }

A) (e9t+1)i(9et+1)j+(et+9)k\left( e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } + 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
B) 9e9ti(9et+8)j+(et+8)k9 e ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } + 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
C) e9ti(9et8)j+(et+8)ke ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } - 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
D) (9e9t+1)i(9et1)j+(et+9)k\left( 9 e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } - 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
Question
The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×r)rmrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime \prime } \right) \cdot \mathbf { r } ^ { m \prime } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

A) 2729\frac { 27 } { 29 }
B) 1029\frac { 10 } { 29 }
C) 5029\frac { 50 } { 29 }
D) 729\frac { 7 } { 29 }
Question
Find the integral (2ti+9t2j+7k)dt\int \left( 2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } \right) d t

A) 2t2i+9t3j+7tk+C2 t ^ { 2 } \mathbf { i } + 9 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
B) t2i+3t3j+7tk+Ct ^ { 2 } \mathbf { i } + 3 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
C) 2ti+9t2j+7k+C2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } + \mathbf { C }
D) 2i+18tj+C2 \mathbf { i } + 18 t \mathbf { j } + \mathbf { C }
Question
Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t y=7t2y = 7 t ^ { 2 } z=8t3z = 8 t ^ { 3 } at the point with t=1t = 1

A) x=3+3tx = 3 + 3 t y=7+14ty = 7 + 14 t z=8+24tz = 8 + 24 t
B) x=1+3tx = 1 + 3 t y=1+14ty = 1 + 14 t z=1+24tz = 1 + 24 t
C) x=1+3tx = 1 + 3 t y=1+7ty = 1 + 7 t z=1+8tz = 1 + 8 t
D) x=3+3tx = 3 + 3 t y=7+7ty = 7 + 7 t z=8+8tz = 8 + 8 t
Question
If r(t)=i+tcosπtj+2sinπtk\mathbf { r } ( t ) = \mathbf { i } + t \cos \pi t \mathbf { j } + 2 \sin \pi t\mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) i2π2j1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i+2π2j+4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
C) i+2π2j4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 4 } { \pi } \mathbf { k }
D) i2π2j+1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
E) i2π2j+4πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
Question
Use Simpson's Rule with n = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

A) 14.82414.824
B) 7.20417.2041
C) 7.41067.4106
D) 6.57066.5706
E) None of these
Question
Find r(t)\mathbf { r } ( t ) if r(t)=sinticostj+6tk\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } - \cos t \mathbf { j } + 6 t \mathbf { k } and r(0)=i+j+5kr ( 0 ) = i + j + 5 k .

A) (cost+2)i+(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
B) (cost)i+(sint1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
C) (cost)i+(sint+1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t + 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
D) (cost+2)i(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
E) (cost+1)i(sint1)j+(3t2+5)k( - \cos t + 1 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
Question
Find the arc length function Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> for the curve defined by Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> for Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> Then use this result to find a parametrization of C in terms of s.
Question
The helix r1(t)=8costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 8 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(8+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 8 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (8,0,0)( 8,0,0 ) . Find the angle of intersection.

A) π3\frac { \pi } { 3 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) 00
E) None of these
Question
Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=2ti+6tj+3tk\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 3 t \mathbf { k } at t=1t = - 1

A) 2i6j3k- 2 \mathbf { i } - 6 \mathbf { j } - 3 \mathbf { k }
B) 27\frac { 2 } { 7 } i + 67\frac { 6 } { 7 } j + 37\frac { 3 } { 7 } k
C) 249- \frac { 2 } { 49 } i 649- \frac { 6 } { 49 } j 349- \frac { 3 } { 49 } k
D) 2i+6j+3k2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }
Question
Find the point(s) on the graph of Find the point(s) on the graph of   at which the curvature is zero.<div style=padding-top: 35px> at which the curvature is zero.
Question
Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \rangle

A) cost25,25,sint25\left\langle\frac { \cos t } { 2 \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { 2 \sqrt { 5 } } \right\rangle
B) 3cost,6,3sint\langle3 \cos t , 6 , - 3 \sin t \rangle
C) cost5,25,sint5\left\langle\frac { \cos t } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { \sqrt { 5 } } \right\rangle
D) 35cost,6,35sint\langle3 \sqrt { 5 } \cos t , 6 , - 3 \sqrt { 5 } \sin t \rangle
E) cost25,425,3sint25\left\langle- \frac { \cos t } { 2 \sqrt { 5 } } , \frac { 4 } { 2 \sqrt { 5 } } , \frac { 3 \sin t } { 2 \sqrt { 5 } } \right\rangle
Question
At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=43 x + 9 y - 4 z = 4 ?

A) (1,3,9)( - 1 , - 3,9 )
B) (9,18,2)( 9,18 , - 2 )
C) (1,9,1)( - 1 , - 9,1 )
D) (18,9,1)( - 18,9,1 )
E) (9,1,1)( - 9,1,1 )
Question
The curvature of the curve given by the vector function rr is k(t)=r(t)×r(t)r(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { \prime } ( t ) \times \mathbf { r } ^ { \prime \prime } ( t ) \right| } { \left| \mathbf { r } ^ { \prime } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right\rangle
at the point (0,1,1)( 0,1,1 ) .

A) 15\sqrt { 15 }
B) 215\frac { \sqrt { 2 } } { 15 }
C) 15215 \sqrt { 2 }
D) 152\frac { 15 } { \sqrt { 2 } }
E) 1515\frac { \sqrt { 15 } } { 15 }
Question
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t3,z=t6;(4,4,4)x = t ^ { 11 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 4,4,4 )

A) x=411t,y=4+3t,z=4+6tx = 4 - 11 t , y = 4 + 3 t , z = 4 + 6 t
B) x=4+11t,y=4+3t,z=4+6tx = 4 + 11 t , y = 4 + 3 t , z = 4 + 6 t
C) x=4+11t,y=4+3t,z=46tx = 4 + 11 t , y = 4 + 3 t , z = 4 - 6 t
D) x=11t,y=4+3t,z=4+6tx = 11 t , y = 4 + 3 t , z = 4 + 6 t
E) x=4+11t,y=43t,z=4+6tx = 4 + 11 t , y = 4 - 3 t , z = 4 + 6 t
Question
Given Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px>
a. Find Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> .
b. Sketch the curve defined by r and the vectors Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> on the same set of axes.
Question
Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } .

A) (,4)(4,)( - \infty , - 4 ) \cup ( - 4 , \infty )
B) (,8)(8,)( - \infty , 8 ) \cup ( 8 , \infty )
C) (,8)(8,)( - \infty , - 8 ) \cup ( - 8 , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
Question
Find the unit tangent vector for the curve given by r(t)=17t7,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 7 } t ^ { 7 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

A) t6,t2,1t10+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 10 } + t ^ { 4 } } }
B) t6,t2,16t12+4t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { 6 t ^ { 12 } + 4 t ^ { 4 } + 1 } }
C) t6,t2,1t12+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } } }
D) t6,t2,1t12+t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } + 1 } }
E) None of these
Question
Find the derivative of the vector function. Find the derivative of the vector function.  <div style=padding-top: 35px>
Question
If If   and   , find   .<div style=padding-top: 35px> and If   and   , find   .<div style=padding-top: 35px> , find If   and   , find   .<div style=padding-top: 35px> .
Question
Find Find   and   for  <div style=padding-top: 35px> and Find   and   for  <div style=padding-top: 35px> for Find   and   for  <div style=padding-top: 35px>
Question
Find the point of intersection of the tangent lines to the curve Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> , at the points where Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> and Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> .
Question
The curves The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree.<div style=padding-top: 35px> and The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree.<div style=padding-top: 35px> intersects at the origin. Find their angle of intersection correct to the nearest degree.
Question
Let r(t)=6t,(et2)t,ln(t+1)\mathbf { r } ( t ) = \left\langle \sqrt { 6 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\rangle . Find the domain of rr .

A) (2,6]( - 2,6 ]
B) (2,0)(0,6]( - 2,0 ) \cup ( 0,6 ]
C) (6,]( 6 , \infty ]
D) (,2)( - \infty , - 2 )
E) [6,0)(0,2)[ 6,0 ) \cup ( 0,2 )
Question
Find an expression for Find an expression for   .<div style=padding-top: 35px> .
Question
Find Find   if   and   .<div style=padding-top: 35px> if Find   if   and   .<div style=padding-top: 35px> and Find   if   and   .<div style=padding-top: 35px> .
Question
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,5,5)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,5,5 )

A) x=0,y=524t,z=5+24tx = 0 , y = 5 - 24 t , z = 5 + 24 t
B) x=1,y=5+24t,z=424tx = 1 , y = 5 + 24 t , z = 4 - 24 t
C) x=t,y=5+24t,z=524tx = t , y = 5 + 24 t , z = 5 - 24 t
D) x=t,y=524t,z=5+24tx = t , y = 5 - 24 t , z = 5 + 24 t
E) x=1,y=5+24t,z=524tx = 1 , y = 5 + 24 t , z = 5 - 24 t
Question
Find Find   and   for  <div style=padding-top: 35px> and Find   and   for  <div style=padding-top: 35px> for Find   and   for  <div style=padding-top: 35px>
Question
Find the domain of the vector function r(t)=9t,1t3,lnt\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right\rangle .

A) [0,3)(3,9)(9,)[ 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
B) (0,3)(3,)( 0,3 ) \cup ( 3 , \infty )
C) (0,3)(3,9)(9,)( 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
D) (0,9)(9,)( 0,9 ) \cup ( 9 , \infty )
Question
Find the limit. limt0+10cost,30sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle10 \cos t , 30 \sin t , 5 t \ln t\rangle

A) r(t)=10k\mathbf { r } ( t ) = 10 \mathbf { k }
B) r(t)=10j\mathbf { r } ( t ) = 10 \mathbf { j }
C) r(t)=10i5k\mathbf { r } ( t ) = 10 \mathbf { i } - 5 \mathbf { k }
D) r(t)=10i+30j+5k\mathbf { r } ( t ) = 10 \mathbf { i } + 30 \mathbf { j } + 5 \mathbf { k }
E) r(t)=10i\mathbf { r } ( t ) = 10 \mathbf { i }
Question
Find the derivative Find the derivative  <div style=padding-top: 35px>
Question
Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

A) r(t)=sintjcostkr ^ { \prime \prime } ( t ) = \sin t j - \cos t \mathrm { k }
B) r(t)=4sintjcostkr ^ { \prime \prime } ( t ) = - 4 \sin t \mathrm { j } - \cos t \mathrm { k }
C) r(t)=4costjsintkr ^ { \prime \prime } ( t ) = - 4 \cos t j - \sin t \mathrm { k }
D) r(t)=costjsintkr ^ { \prime \prime } ( t ) = \cos t j - \sin t \mathrm { k }
E) r(t)=sintj+4costkr ^ { \prime \prime } ( t ) = - \sin t \mathrm { j } + 4 \cos t \mathrm { k }
Question
Find the integral Find the integral  <div style=padding-top: 35px>
Question
Find Find   for the function given.  <div style=padding-top: 35px> for the function given. Find   for the function given.  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/93
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Vector Functions
1
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
not answered
2
The following table gives coordinates of a particle moving through space along a smooth curve. txyz0.55.89.14.3112.614.916.81.525.621.229.4239.239.537.92.542.442.443\begin{array} { | c | c | c | c | } \hline \mathbf { t } & x & y & z \\\hline 0.5 & 5.8 & 9.1 & 4.3 \\\hline 1 & 12.6 & 14.9 & 16.8 \\\hline 1.5 & 25.6 & 21.2 & 29.4 \\\hline 2 & 39.2 & 39.5 & 37.9 \\\hline 2.5 & 42.4 & 42.4 & 43 \\\hline\end{array} Find the average velocity over the time interval [2.5,1.5][ 2.5,1.5 ] .

A) v=13.6i+21.12j+16.8k\mathbf { v } = 13.6 \mathbf { i } + 21.12 \mathbf { j } + 16.8 \mathbf { k }
B) v=13.6i+16.8j+16.8kv = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 16.8 \mathbf { k }
C) v=13.6i+16.8j+13.6k\mathbf { v } = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 13.6 \mathbf { k }
D) v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
E) v=21.12i+21.12j+13.6k\mathbf { v } = 21.12 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
3
What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

A) F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
B) F(t)=30mt2i+20mj+42mtk\mathrm { F } ( t ) = 30 m t ^ { 2 } \mathbf { i } + 20 m \mathbf { j } + 42 m t \mathbf { k }
C) F(t)=42mti+42mj+20mtk\mathrm { F } ( t ) = 42 m t \mathbf { i } + 42 m \mathbf { j } + 20 m t \mathbf { k }
D) F(t)=mt2i+5mtj+10mt2k\mathrm { F } ( t ) = m t ^ { 2 } \mathbf { i } + 5 m t \mathbf { j } + 10 m t ^ { 2 } \mathbf { k }
E) F(t)=30mti+20mj+tk\mathrm { F } ( t ) = 30 m t \mathbf { i } + 20 m \mathbf { j } + t \mathbf { k }
F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
4
Find the acceleration of a particle with the following position function. r(t)={2t22,4t}\mathbf { r } ( t ) = \left\{ 2 t ^ { 2 } - 2,4 t \right\}

A) a(t)=4i\mathbf { a } ( t ) = 4 \mathbf { i }
B) a(t)=2ti+2j\mathbf { a } ( t ) = 2 t \mathbf { i } + 2 \mathbf { j }
C) a(t)=(2+4t)i2j\mathbf { a } ( t ) = ( 2 + 4 t ) \mathbf { i } - 2 \mathbf { j }
D) a(t)=2ij\mathbf { a } ( t ) = 2 \mathbf { i } - \mathbf { j }
E) a(t)=4ti+2j\mathbf { a } ( t ) = 4 t \mathbf { i } + 2 \mathbf { j }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
5
A force with magnitude 1212 N acts directly upward from the xy-plane on an object with mass 22 kg. The object starts at the origin with initial velocity v(0)=3i2j\mathbf { v } ( 0 ) = 3 \mathbf { i } - 2 \mathbf { j } . Find its position function.

A) r(t)=2t2i3t2j+12t3k\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - 3 t ^ { 2 } \mathbf { j } + 12 t ^ { 3 } \mathbf { k }
B) r(t)=2ti4tj+t2k\mathbf { r } ( t ) = 2 t \mathbf { i } - 4 t \mathbf { j } + t ^ { 2 } \mathbf { k }
C) r(t)=3ti2tj+\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j } + 33  k \text { k }
D) r(t)=3ti2tj\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j }
E) r(t)=5t3i4j+2k\mathbf { r } ( t ) = 5 t ^ { 3 } \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
6
A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

A) d43.3d \approx 43.3 km
B) d350d \approx 350 km
C) d63.3d \approx 63.3 km
D) d433d \approx 433 km
E) d53.3d \approx 53.3 km
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
7
Find the velocity of a particle with the given position function. r(t)=11e9ti+9e13tj\mathbf { r } ( t ) = 11 e ^ { 9 t } \mathbf { i } + 9 e ^ { - 13 t } \mathbf { j }

A) v(t)=e9ti+117e13tj\mathbf { v } ( t ) = e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
B) v(t)=99e9ti117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
C) v(t)=11e9ti+e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } + e ^ { - 13 t } \mathbf { j }
D) v(t)=11e9ti117e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
E) v(t)=99e9ti+117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
8
A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

A) aT=5ta _ { T } = 5 t
B) aT=542ta _ { T } = 542 t
C) aT=42t+5a _ { T } = 42 t + 5
D) aT=55ta _ { T } = - 55 t
E) aT=42ta _ { T } = 42 t
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
9
A particle moves with position function A particle moves with position function   . Find the acceleration of the particle. . Find the acceleration of the particle.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
10
Find the position vector of a particle that has the given acceleration and the given initial velocity and position. Find the position vector of a particle that has the given acceleration and the given initial velocity and position.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
11
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et(cos8t,sin8t,8)\mathbf { r } ( t ) = e ^ { t } ( \cos 8 t , \sin 8 t , 8 )

A) aT=65eta _ { \mathbf { T } } = \sqrt { 65 } e ^ { t } , aN=865eta _ { \mathrm { N } } = 8 \sqrt { 65 } e ^ { t }
B) aT=865eta _ { \mathbf { T } } = 8 \sqrt { 65 } e ^ { t } , aN=65eta _ { \mathrm { N } } = \sqrt { 65 } e ^ { t }
C) aT=65eta _ { \mathbf { T } } = 65 e ^ { t } , aN(t)=8eta _ { \mathrm { N } } ( t ) = 8 e ^ { t }
D) aT=8eta _ { \mathbf { T } } = 8 e ^ { t } , aN=65eta _ { \mathrm { N } } = 65 e ^ { t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
12
Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

A) a(t)=9sinti9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } - 9 \cos t \mathbf { j }
B) a(t)=9sinti+9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 9 \cos t \mathbf { j }
C) a(t)=9sinti+10costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 10 \cos t \mathbf { k }
D) a(t)=9sinti+8costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 8 \cos t \mathbf { k }
E) a(t)=9sinti10tk\mathbf { a } ( t ) = 9 \sin t \mathbf { i } - 10 t \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
13
A mortar shell is fired with a muzzle speed of 325 ft/sec. Find the angle of elevation of the mortar if the shell strikes a target located 1500 ft away. Round your answer to 2 decimal places.

A) 12.2212.22 ^ { \circ }
B) 0.640.64 ^ { \circ }
C) 13.5113.51 ^ { \circ }
D) 0.240.24 ^ { \circ }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
14
Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

A) v(t)=1+100t2+100t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 100 t ^ { 10 } }
B) v(t)=1+100t+324t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + 324 t ^ { 9 } }
C) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = 1 + 100 t ^ { 2 } + 324 t ^ { 10 }
D) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 324 t ^ { 10 } }
E) v(t)=1+100t+t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + t ^ { 9 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
15
A particle moves with position function A particle moves with position function   . Find the normal component of the acceleration vector. .
Find the normal component of the acceleration vector.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
16
Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

A) v(t)=5(e5t+e5t)| v ( t ) | = 5 \left( e ^ { 5 t } + e ^ { - 5 t } \right)
B) v(t)=(e5t+e5t)| v ( t ) | = \left( e ^ { 5 t } + e ^ { - 5 t } \right)
C) v(t)=5+5et+5et| v ( t ) | = \sqrt { 5 + 5 e ^ { t } + 5 e ^ { - t } }
D) v(t)=5(et+et)| v ( t ) | = 5 \left( e ^ { t } + e ^ { - t } \right)
E) v(t)=5+e5t+e50t| v ( t ) | = \sqrt { 5 + e ^ { 5 t } + e ^ { - 50 t } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
17
A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 3030 m away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

A) v017 m/sv _ { 0 } \approx 17 \mathrm {~m} / \mathrm { s }
B) v022 m/sv _ { 0 } \approx 22 \mathrm {~m} / \mathrm { s } .
C) v042 m/sv _ { 0 } \approx 42 \mathrm {~m} / \mathrm { s } .
D) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s }
E) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s } .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
18
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

A) aT=0a _ { \mathbf { T } } = 0 aN=3a _ { \mathrm { N } } = 3
B) aT=5a _ { \mathbf { T } } = 5 aN=3a _ { \mathrm { N } } = 3
C) aT=0a _ { \mathbf { T } } = 0 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
D) aT=5a _ { \mathbf { T } } = 5 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
19
The position function of a particle is given by r(t)=5t2,5t,5t2100t\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\rangle When is the speed a minimum?

A) t=5t = 5
B) t=30t = 30
C) t=20t = 20
D) t=0t = 0
E) t=10t = 10
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
20
Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 \mathbf { k } , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

A) v(t)=12ij+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - \mathbf { j } + 3 t \mathbf { k }
B) v(t)=12i7j+tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + t \mathbf { k }
C) v(t)=(12t9)i+7tk\mathbf { v } ( t ) = ( 12 t - 9 ) \mathbf { i } + 7 t \mathbf { k }
D) v(t)=i7j+3tk\mathbf { v } ( t ) = \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
E) v(t)=12i7j+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
21
Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

A) 43\frac { 4 } { 3 }
B) 34\frac { 3 } { 4 }
C) 5116\frac { 51 } { 16 }
D) 1651\frac { 16 } { 51 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
22
Find the scalar tangential and normal components of acceleration of a particle with position vector Find the scalar tangential and normal components of acceleration of a particle with position vector
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
23
Find the curvature of y=x4y = x ^ { 4 } .

A) 12x2(116x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 - 16 x ^ { 6 } \right) ^ { 3 / 2 } }
B) 12x2(1+16x6)1/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
C) x2(1+x6)3/2\frac { | x | ^ { 2 } } { \left( 1 + x ^ { 6 } \right) ^ { 3 / 2 } }
D) x2(1+16x6)1/2\frac { | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
E) 12x2(1+16x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 3 / 2 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
24
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
25
A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of   . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height? .
a. What are the scalar tangential and normal components of acceleration of the projectile?
b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
26
Find the velocity and position vectors of an object with acceleration Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  initial velocity Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  and initial position Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
27
Find the length of the curve r(t)=2ti+t2j+lntk\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } 1te31 \leq t \leq e ^ { 3 }

A) e6e ^ { 6 }
B) e3e ^ { 3 }
C) e6+2e ^ { 6 } + 2
D) e3+2e ^ { 3 } + 2
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
28
For the curve given by r(t)=(4sint,5t,4cost)\mathbf { r } ( t ) = (4 \sin t , 5 t , 4 \mathrm { cos } t ) , find the unit normal vector. a(t)=2k,v(0)=10i9j\mathbf { a } ( t ) = 2 \mathbf { k } , \mathbf { v } ( 0 ) = 10 \mathbf { i } - 9 \mathbf { j }

A) (2sint,5,2cost)( 2 \sin t , 5 , - 2 \cos t)
B) (2sint,0,2cost)(- 2 \sin t , 0 , - 2 \cos t )
C) (sint29,0,cost29)\left( - \frac { \sin t } { \sqrt { 29 } } , 0 , - \frac { \cos t } { \sqrt { 29 } } \right)
D) (29sint,0,29cost)( \sqrt { 29 } \sin t , 0 , - \sqrt { 29 } \mathrm { cost } )
E) None of these
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
29
Find the length of the curve r(t)=8ti+3costj+3sintk\mathbf { r } ( t ) = 8 t \mathbf { i } + 3 \cos t \mathbf { j } + 3 \sin t \mathbf { k } 0t2π0 \leq t \leq 2 \pi

A) 2732 \sqrt { 73 } π\pi
B) 73\sqrt { 73 } π\pi
C) 11\sqrt { 11 } π\pi
D) 2112 \sqrt { 11 } π\pi
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
30
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by  and Find the unit tangent and unit normal vectors   and   for the curve C defined by  for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
31
Let C be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to C corresponding to t. The plane determined by T and N is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1

A) z=2z = 2
B) y=3y = 3
C) 2x+3y+2z=12 x + 3 y + 2 z = 1
D) x=2x = 2
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
32
Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

A) r(t(s))=(53126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 - \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
B) r(t(s))=(5+3126s)i+(89126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 - \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
C) r(t(s))=(5+3126s)i+(8+9126s)j+(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } + ( 6 s ) \mathbf { k }
D) r(t(s))=(5+3126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
E) r(t(s))=(5+3126s)i+(8+9126s)j(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - ( 6 s ) \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
33
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
34
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
35
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  Sketch the graph of C, and show Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  for Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
36
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
37
A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of <strong>A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of   </strong> A) Find the range of the projectile. B) What is the maximm height attained by the projectile? C) What is the speed of the projectile at impact? Round your answers to the nearest integer.

A) Find the range of the projectile.
B) What is the maximm height attained by the projectile?
C) What is the speed of the projectile at impact?
Round your answers to the nearest integer.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
38
Find the length of the curve r(t)=2titj+tk\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } 2t1.- 2 \leq t \leq 1 .

A) 363 \sqrt { 6 }
B) 6\sqrt { 6 }
C) 262 \sqrt { 6 }
D) 666 \sqrt { 6 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
39
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
40
Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } .

A) 1
B) 2102 \sqrt { 10 }
C) 11
D) 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
41
Find parametric equations for the tangent line to the curve with parametric equations x=2tx = 2 t y=7t2y = 7 t ^ { 2 } z=4t3z = 4 t ^ { 3 } at the point with t=1t = 1

A) x=2+2tx = 2 + 2 t y=7+14ty = 7 + 14 t z=4+12tz = 4 + 12 t
B) x=2+2tx = 2 + 2 t y=7+7ty = 7 + 7 t z=4+4tz = 4 + 4 t
C) x=1+2tx = 1 + 2 t y=1+7ty = 1 + 7 t z=1+4tz = 1 + 4 t
D) x=1+2tx = 1 + 2 t y=1+14ty = 1 + 14 t z=1+12tz = 1 + 12 t
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate the integral. (e9ti+14tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 14 t \mathbf { j } + \ln t \mathbf { k } \right) d t

A) e9t9i+7t2j+t(lnt1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t - 1 ) \mathbf { k } + C
B) e9ti+7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
C) e9t9i+7t2j+t(lnt+9)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 9 ) \mathbf { k } + C
D) e9t9i7t2j+t(lnt+1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 1 ) \mathbf { k } + C
E) e9ti7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
43
Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=5i+8tj6t2k\mathbf { r } ^ { \prime } ( t ) = 5 \mathbf { i } + 8 t \mathbf { j } - 6 t ^ { 2 } \mathbf { k } r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j }

A) (5t+1)i+(4t2+1)j2t3k( 5 t + 1 ) \mathbf { i } + \left( 4 t ^ { 2 } + 1 \right) \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
B) (5t+1)i+(8t2+1)j6t3k( 5 t + 1 ) \mathbf { i } + \left( 8 t ^ { 2 } + 1 \right) \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
C) 5ti+4t2j2t3k5 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
D) 5ti+8t2j6t3k5 t \mathbf { i } + 8 t ^ { 2 } \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
44
The figure shows a curve CC given by a vector function r(t)\mathbf { r } ( t ) . Choose the correct expression for r(4)\mathbf { r } ^ { \prime } ( 4 ) .  <strong>The figure shows a curve  C  given by a vector function  \mathbf { r } ( t )  . Choose the correct expression for  \mathbf { r } ^ { \prime } ( 4 )  .  </strong> A)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }  B)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }  C)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }  D)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }  E)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }

A) limh0r(4h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }
B) limh0r(4+h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }
C) limh0r(4+h)r(h)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }
D) limh0r(4h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }
E) limh0r(4+h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
45
If
r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t ) .

A) 0,110t9,72t7\left\langle 0,110 t ^ { 9 } , 72 t ^ { 7 } \right\rangle
B) 0,72t6,110t8\left\langle 0,72 t ^ { 6 } , 110 t ^ { 8 } \right\rangle
C) 0,72t7,110t9\left\langle0,72 t ^ { 7 } , 110 t ^ { 9 } \right\rangle
D) 0,110t8,72t6\left\langle0,110 t ^ { 8 } , 72 t ^ { 6 } \right\rangle
E) 1,9t6,11t8\left\langle 1,9 t ^ { 6 } , 11 t ^ { 8 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
46
Find equations of the normal plane to Find equations of the normal plane to   at the point (2, 4, 8). at the point (2, 4, 8).
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
47
Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=9e9ti+9etj+etk\mathbf { r } ^ { t } ( t ) = 9 e ^ { 9 t } \mathbf { i } + 9 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } r(0)=ij+9k\mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 9 \mathbf { k }

A) (e9t+1)i(9et+1)j+(et+9)k\left( e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } + 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
B) 9e9ti(9et+8)j+(et+8)k9 e ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } + 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
C) e9ti(9et8)j+(et+8)ke ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } - 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
D) (9e9t+1)i(9et1)j+(et+9)k\left( 9 e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } - 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
48
The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×r)rmrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime \prime } \right) \cdot \mathbf { r } ^ { m \prime } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

A) 2729\frac { 27 } { 29 }
B) 1029\frac { 10 } { 29 }
C) 5029\frac { 50 } { 29 }
D) 729\frac { 7 } { 29 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
49
Find the integral (2ti+9t2j+7k)dt\int \left( 2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } \right) d t

A) 2t2i+9t3j+7tk+C2 t ^ { 2 } \mathbf { i } + 9 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
B) t2i+3t3j+7tk+Ct ^ { 2 } \mathbf { i } + 3 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
C) 2ti+9t2j+7k+C2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } + \mathbf { C }
D) 2i+18tj+C2 \mathbf { i } + 18 t \mathbf { j } + \mathbf { C }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
50
Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t y=7t2y = 7 t ^ { 2 } z=8t3z = 8 t ^ { 3 } at the point with t=1t = 1

A) x=3+3tx = 3 + 3 t y=7+14ty = 7 + 14 t z=8+24tz = 8 + 24 t
B) x=1+3tx = 1 + 3 t y=1+14ty = 1 + 14 t z=1+24tz = 1 + 24 t
C) x=1+3tx = 1 + 3 t y=1+7ty = 1 + 7 t z=1+8tz = 1 + 8 t
D) x=3+3tx = 3 + 3 t y=7+7ty = 7 + 7 t z=8+8tz = 8 + 8 t
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
51
If r(t)=i+tcosπtj+2sinπtk\mathbf { r } ( t ) = \mathbf { i } + t \cos \pi t \mathbf { j } + 2 \sin \pi t\mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) i2π2j1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i+2π2j+4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
C) i+2π2j4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 4 } { \pi } \mathbf { k }
D) i2π2j+1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
E) i2π2j+4πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
52
Use Simpson's Rule with n = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

A) 14.82414.824
B) 7.20417.2041
C) 7.41067.4106
D) 6.57066.5706
E) None of these
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
53
Find r(t)\mathbf { r } ( t ) if r(t)=sinticostj+6tk\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } - \cos t \mathbf { j } + 6 t \mathbf { k } and r(0)=i+j+5kr ( 0 ) = i + j + 5 k .

A) (cost+2)i+(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
B) (cost)i+(sint1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
C) (cost)i+(sint+1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t + 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
D) (cost+2)i(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
E) (cost+1)i(sint1)j+(3t2+5)k( - \cos t + 1 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
54
Find the arc length function Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. for the curve defined by Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. for Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. Then use this result to find a parametrization of C in terms of s.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
55
The helix r1(t)=8costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 8 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(8+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 8 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (8,0,0)( 8,0,0 ) . Find the angle of intersection.

A) π3\frac { \pi } { 3 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) 00
E) None of these
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
56
Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=2ti+6tj+3tk\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 3 t \mathbf { k } at t=1t = - 1

A) 2i6j3k- 2 \mathbf { i } - 6 \mathbf { j } - 3 \mathbf { k }
B) 27\frac { 2 } { 7 } i + 67\frac { 6 } { 7 } j + 37\frac { 3 } { 7 } k
C) 249- \frac { 2 } { 49 } i 649- \frac { 6 } { 49 } j 349- \frac { 3 } { 49 } k
D) 2i+6j+3k2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
57
Find the point(s) on the graph of Find the point(s) on the graph of   at which the curvature is zero. at which the curvature is zero.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
58
Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \rangle

A) cost25,25,sint25\left\langle\frac { \cos t } { 2 \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { 2 \sqrt { 5 } } \right\rangle
B) 3cost,6,3sint\langle3 \cos t , 6 , - 3 \sin t \rangle
C) cost5,25,sint5\left\langle\frac { \cos t } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { \sqrt { 5 } } \right\rangle
D) 35cost,6,35sint\langle3 \sqrt { 5 } \cos t , 6 , - 3 \sqrt { 5 } \sin t \rangle
E) cost25,425,3sint25\left\langle- \frac { \cos t } { 2 \sqrt { 5 } } , \frac { 4 } { 2 \sqrt { 5 } } , \frac { 3 \sin t } { 2 \sqrt { 5 } } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
59
At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=43 x + 9 y - 4 z = 4 ?

A) (1,3,9)( - 1 , - 3,9 )
B) (9,18,2)( 9,18 , - 2 )
C) (1,9,1)( - 1 , - 9,1 )
D) (18,9,1)( - 18,9,1 )
E) (9,1,1)( - 9,1,1 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
60
The curvature of the curve given by the vector function rr is k(t)=r(t)×r(t)r(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { \prime } ( t ) \times \mathbf { r } ^ { \prime \prime } ( t ) \right| } { \left| \mathbf { r } ^ { \prime } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right\rangle
at the point (0,1,1)( 0,1,1 ) .

A) 15\sqrt { 15 }
B) 215\frac { \sqrt { 2 } } { 15 }
C) 15215 \sqrt { 2 }
D) 152\frac { 15 } { \sqrt { 2 } }
E) 1515\frac { \sqrt { 15 } } { 15 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
61
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t3,z=t6;(4,4,4)x = t ^ { 11 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 4,4,4 )

A) x=411t,y=4+3t,z=4+6tx = 4 - 11 t , y = 4 + 3 t , z = 4 + 6 t
B) x=4+11t,y=4+3t,z=4+6tx = 4 + 11 t , y = 4 + 3 t , z = 4 + 6 t
C) x=4+11t,y=4+3t,z=46tx = 4 + 11 t , y = 4 + 3 t , z = 4 - 6 t
D) x=11t,y=4+3t,z=4+6tx = 11 t , y = 4 + 3 t , z = 4 + 6 t
E) x=4+11t,y=43t,z=4+6tx = 4 + 11 t , y = 4 - 3 t , z = 4 + 6 t
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
62
Given Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.
a. Find Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. .
b. Sketch the curve defined by r and the vectors Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. on the same set of axes.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
63
Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } .

A) (,4)(4,)( - \infty , - 4 ) \cup ( - 4 , \infty )
B) (,8)(8,)( - \infty , 8 ) \cup ( 8 , \infty )
C) (,8)(8,)( - \infty , - 8 ) \cup ( - 8 , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
64
Find the unit tangent vector for the curve given by r(t)=17t7,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 7 } t ^ { 7 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

A) t6,t2,1t10+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 10 } + t ^ { 4 } } }
B) t6,t2,16t12+4t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { 6 t ^ { 12 } + 4 t ^ { 4 } + 1 } }
C) t6,t2,1t12+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } } }
D) t6,t2,1t12+t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } + 1 } }
E) None of these
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
65
Find the derivative of the vector function. Find the derivative of the vector function.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
66
If If   and   , find   . and If   and   , find   . , find If   and   , find   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
67
Find Find   and   for  and Find   and   for  for Find   and   for
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
68
Find the point of intersection of the tangent lines to the curve Find the point of intersection of the tangent lines to the curve   , at the points where   and   . , at the points where Find the point of intersection of the tangent lines to the curve   , at the points where   and   . and Find the point of intersection of the tangent lines to the curve   , at the points where   and   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
69
The curves The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree. and The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree. intersects at the origin. Find their angle of intersection correct to the nearest degree.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
70
Let r(t)=6t,(et2)t,ln(t+1)\mathbf { r } ( t ) = \left\langle \sqrt { 6 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\rangle . Find the domain of rr .

A) (2,6]( - 2,6 ]
B) (2,0)(0,6]( - 2,0 ) \cup ( 0,6 ]
C) (6,]( 6 , \infty ]
D) (,2)( - \infty , - 2 )
E) [6,0)(0,2)[ 6,0 ) \cup ( 0,2 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
71
Find an expression for Find an expression for   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
72
Find Find   if   and   . if Find   if   and   . and Find   if   and   . .
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
73
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,5,5)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,5,5 )

A) x=0,y=524t,z=5+24tx = 0 , y = 5 - 24 t , z = 5 + 24 t
B) x=1,y=5+24t,z=424tx = 1 , y = 5 + 24 t , z = 4 - 24 t
C) x=t,y=5+24t,z=524tx = t , y = 5 + 24 t , z = 5 - 24 t
D) x=t,y=524t,z=5+24tx = t , y = 5 - 24 t , z = 5 + 24 t
E) x=1,y=5+24t,z=524tx = 1 , y = 5 + 24 t , z = 5 - 24 t
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
74
Find Find   and   for  and Find   and   for  for Find   and   for
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
75
Find the domain of the vector function r(t)=9t,1t3,lnt\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right\rangle .

A) [0,3)(3,9)(9,)[ 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
B) (0,3)(3,)( 0,3 ) \cup ( 3 , \infty )
C) (0,3)(3,9)(9,)( 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
D) (0,9)(9,)( 0,9 ) \cup ( 9 , \infty )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
76
Find the limit. limt0+10cost,30sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle10 \cos t , 30 \sin t , 5 t \ln t\rangle

A) r(t)=10k\mathbf { r } ( t ) = 10 \mathbf { k }
B) r(t)=10j\mathbf { r } ( t ) = 10 \mathbf { j }
C) r(t)=10i5k\mathbf { r } ( t ) = 10 \mathbf { i } - 5 \mathbf { k }
D) r(t)=10i+30j+5k\mathbf { r } ( t ) = 10 \mathbf { i } + 30 \mathbf { j } + 5 \mathbf { k }
E) r(t)=10i\mathbf { r } ( t ) = 10 \mathbf { i }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
77
Find the derivative Find the derivative
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
78
Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

A) r(t)=sintjcostkr ^ { \prime \prime } ( t ) = \sin t j - \cos t \mathrm { k }
B) r(t)=4sintjcostkr ^ { \prime \prime } ( t ) = - 4 \sin t \mathrm { j } - \cos t \mathrm { k }
C) r(t)=4costjsintkr ^ { \prime \prime } ( t ) = - 4 \cos t j - \sin t \mathrm { k }
D) r(t)=costjsintkr ^ { \prime \prime } ( t ) = \cos t j - \sin t \mathrm { k }
E) r(t)=sintj+4costkr ^ { \prime \prime } ( t ) = - \sin t \mathrm { j } + 4 \cos t \mathrm { k }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
79
Find the integral Find the integral
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
80
Find Find   for the function given.  for the function given. Find   for the function given.
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 93 flashcards in this deck.