Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If u(t)=i5t2j+4t4k\mathbf { u } ( t ) = \mathbf { i } - 5 t ^ { 2 } \mathbf { j } + 4 t ^ { 4 } \mathbf { k } and v(t)=ticostj+sintk\mathbf { v } ( t ) = t \mathbf { i } - \cos t \mathbf { j } + \sin t \mathbf { k } , find ddt[u(t)v(t)]\frac { d } { d t } [ \mathbf { u } ( t ) \cdot \mathbf { v } ( t ) ] .

Free
(Short Answer)
4.9/5
(33)
Correct Answer:
Verified

1+10tcost+4t4cost1 + 10 t \cos t + 4 t ^ { 4 } \cos t

A force with magnitude 1212 N acts directly upward from the xy-plane on an object with mass 22 kg. The object starts at the origin with initial velocity v(0)=3i2j\mathbf { v } ( 0 ) = 3 \mathbf { i } - 2 \mathbf { j } . Find its position function.

Free
(Multiple Choice)
4.9/5
(41)
Correct Answer:
Verified

C

The curves r1(t)=t,t4,t8\mathbf { r } _ { 1 } ( t ) = \left\langle t , \mathrm { t } ^ { 4 } , \mathrm { t } ^ { 8 } \right\rangle and r2(t)=sint,sin5t,t\mathbf { r } _ { 2 } ( t ) = \langle \sin t , \sin 5 t , t \rangle intersects at the origin. Find their angle of intersection correct to the nearest degree.

Free
(Short Answer)
4.8/5
(31)
Correct Answer:
Verified

7979^{\circ}

If r(t)=i+tcosπtj+2sinπtk\mathbf { r } ( t ) = \mathbf { i } + t \cos \pi t \mathbf { j } + 2 \sin \pi t\mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

(Multiple Choice)
5.0/5
(39)

Find the acceleration of a particle with the following position function. r(t)={2t22,4t}\mathbf { r } ( t ) = \left\{ 2 t ^ { 2 } - 2,4 t \right\}

(Multiple Choice)
4.8/5
(45)

Find a vector function describing the curve of intersection of the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and the plane x+y+6z=7x + y + 6 z = 7

(Short Answer)
5.0/5
(36)

A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of 6060 ^ { \circ } A) Find the range of the projectile. B) What is the maximm height attained by the projectile? C) What is the speed of the projectile at impact? Round your answers to the nearest integer.

(Short Answer)
4.9/5
(37)

The figure shows a curve CC given by a vector function r(t)\mathbf { r } ( t ) . Choose the correct expression for r(4)\mathbf { r } ^ { \prime } ( 4 ) .  The figure shows a curve  C  given by a vector function  \mathbf { r } ( t )  . Choose the correct expression for  \mathbf { r } ^ { \prime } ( 4 )  .

(Multiple Choice)
4.9/5
(40)

Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=5i+8tj6t2k\mathbf { r } ^ { \prime } ( t ) = 5 \mathbf { i } + 8 t \mathbf { j } - 6 t ^ { 2 } \mathbf { k } r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j }

(Multiple Choice)
4.7/5
(34)

Find the unit tangent and unit normal vectors T(t)\mathbf { T } ( t ) and N(t)\mathbf { N } ( t ) for the curve C defined by r(t)=5i+tj+t2k\mathbf { r } ( t ) = 5 \mathbf { i } + t \mathbf { j } + t ^ { 2 } \mathbf { k }

(Short Answer)
4.9/5
(38)

Find the arc length function s(t)s ( t ) for the curve defined by r(t)=e2tcosti+e2tsintj+e2tk\mathbf { r } ( t ) = e ^ { 2 t } \cos t \mathbf { i } + e ^ { 2 t } \sin t \mathbf { j } + e ^ { 2 t } \mathbf { k } for t0t \geq 0 Then use this result to find a parametrization of C in terms of s.

(Short Answer)
4.9/5
(39)

Find the derivative ddt[r(6t)r(t4)]\frac { d } { d t } \left[ \mathbf { r } ( 6 t ) \cdot \mathbf { r } \left( t ^ { 4 } \right) \right]

(Short Answer)
4.9/5
(40)

Use Simpson's Rule with n = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

(Multiple Choice)
5.0/5
(38)

Find the velocity and position vectors of an object with acceleration a(t)=4i72jj+(72t+4)k\mathbf { a } ( t ) = 4 \mathbf { i } - 72 \mathbf { j } \mathbf { j } + ( 72 t + 4 ) \mathbf { k } initial velocity v(0)=i+k\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { k } and initial position r(0)=j+3k\mathbf { r } ( 0 ) = \mathbf { j } + 3 \mathbf { k }

(Short Answer)
4.8/5
(30)

Find the length of the curve r(t)=8ti+3costj+3sintk\mathbf { r } ( t ) = 8 t \mathbf { i } + 3 \cos t \mathbf { j } + 3 \sin t \mathbf { k } 0t2π0 \leq t \leq 2 \pi

(Multiple Choice)
4.8/5
(45)

If r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t ) .

(Multiple Choice)
4.8/5
(35)

The position function of a particle is given by r(t)=5t2,5t,5t2100t\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\rangle When is the speed a minimum?

(Multiple Choice)
4.9/5
(49)

Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

(Multiple Choice)
4.9/5
(40)

Find the limit. limt0+10cost,30sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle10 \cos t , 30 \sin t , 5 t \ln t\rangle

(Multiple Choice)
4.8/5
(32)

Find the curvature of y=x4y = x ^ { 4 } .

(Multiple Choice)
4.9/5
(33)
Showing 1 - 20 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)