Deck 4: Section 6: Integration

Full screen (f)
exit full mode
Question
Use the error formula to estimate the error in approximating the integral <strong>Use the error formula to estimate the error in approximating the integral   with   using Simpson's Rule. Round your answer to six decimal places.</strong> A) 0.007084 B) 0.141676 C) 0.004723 D) 0.003936 E) 0.002530 <div style=padding-top: 35px> with <strong>Use the error formula to estimate the error in approximating the integral   with   using Simpson's Rule. Round your answer to six decimal places.</strong> A) 0.007084 B) 0.141676 C) 0.004723 D) 0.003936 E) 0.002530 <div style=padding-top: 35px> using Simpson's Rule. Round your answer to six decimal places.

A) 0.007084
B) 0.141676
C) 0.004723
D) 0.003936
E) 0.002530
Use Space or
up arrow
down arrow
to flip the card.
Question
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px>

A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
Question
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px>

A) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
Question
Use the Trapezoidal Rule to approximate the value of the definite integral <strong>Use the Trapezoidal Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) -8.0654 B) -4.0327 C) -2.0164 D) -1.0082 E) -0.5041 <div style=padding-top: 35px> with <strong>Use the Trapezoidal Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) -8.0654 B) -4.0327 C) -2.0164 D) -1.0082 E) -0.5041 <div style=padding-top: 35px> . Round your answer to four decimal places.

A) -8.0654
B) -4.0327
C) -2.0164
D) -1.0082
E) -0.5041
Question
Use a computer algebra system and Simpson's Rule with <strong>Use a computer algebra system and Simpson's Rule with   to approximate t in the integral equation   . Round your answer to three decimal places.</strong> A) 3.501 B) 3.581 C) 3.901 D) 3.529 E) 3.171 <div style=padding-top: 35px> to approximate t in the integral equation <strong>Use a computer algebra system and Simpson's Rule with   to approximate t in the integral equation   . Round your answer to three decimal places.</strong> A) 3.501 B) 3.581 C) 3.901 D) 3.529 E) 3.171 <div style=padding-top: 35px> . Round your answer to three decimal places.

A) 3.501
B) 3.581
C) 3.901
D) 3.529
E) 3.171
Question
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px>

A) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> .
D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> .
E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . <div style=padding-top: 35px> .
Question
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px>

A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
Question
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using Simpson's Rule.</strong> A) 10 B) 16 C) 6 D) 8 E) 13 <div style=padding-top: 35px> is less than 0.00001 using Simpson's Rule.

A) 10
B) 16
C) 6
D) 8
E) 13
Question
Use Simpson's Rule to approximate the value of the definite integral <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> with <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . Round your answer to four decimal places.

A) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use Simpson's Rule with <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 <div style=padding-top: 35px> to approximate <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 <div style=padding-top: 35px> using the equation <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 <div style=padding-top: 35px> . Round your answer to five decimal places.

A) 3.14159
B) 3.13595
C) 3.14723
D) 3.14381
E) 3.13937
Question
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px>

A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . <div style=padding-top: 35px> .
Question
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using the Trapezoidal Rule. Use a graphing utility to estimate the maximum of the absolute value of the second derivative.</strong> A) 208 B) 189 C) 196 D) 201 E) 188 <div style=padding-top: 35px> is less than 0.00001 using the Trapezoidal Rule. Use a graphing utility to estimate the maximum of the absolute value of the second derivative.

A) 208
B) 189
C) 196
D) 201
E) 188
Question
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using Simpson's Rule.</strong> A) 48 B) 8 C) 11 D) 14 E) 19 <div style=padding-top: 35px> is less than 0.00001 using Simpson's Rule.

A) 48
B) 8
C) 11
D) 14
E) 19
Question
Use the Trapezoid Rule to approximate the value of the definite integral <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> wth <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> . Round your answer to four decimal places.

A) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use Simpson's Rule to approximate the value of the definite integral <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) 2.9784 B) 3.0627 C) 8.0100 D) 10.6800 E) 2.6700 <div style=padding-top: 35px> with <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) 2.9784 B) 3.0627 C) 8.0100 D) 10.6800 E) 2.6700 <div style=padding-top: 35px> . Round your answer to four decimal places.

A) 2.9784
B) 3.0627
C) 8.0100
D) 10.6800
E) 2.6700
Question
Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with <strong>Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with   when approximating the following integral.  </strong> A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013. B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200. C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200. D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000. E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000. <div style=padding-top: 35px> when approximating the following integral. <strong>Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with   when approximating the following integral.  </strong> A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013. B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200. C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200. D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000. E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000. <div style=padding-top: 35px>

A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013.
B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200.
C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200.
D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000.
E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000.
Question
Use the error formula to estimate the error in approximating the integral <strong>Use the error formula to estimate the error in approximating the integral   with   using Trapezoidal Rule.</strong> A) 3 B) 1 C) 6 D) 0 E) 9 <div style=padding-top: 35px> with <strong>Use the error formula to estimate the error in approximating the integral   with   using Trapezoidal Rule.</strong> A) 3 B) 1 C) 6 D) 0 E) 9 <div style=padding-top: 35px> using Trapezoidal Rule.

A) 3
B) 1
C) 6
D) 0
E) 9
Question
Find the smallest n such that the error estimate from the error formula in the approximation of the definite integral <strong>Find the smallest n such that the error estimate from the error formula in the approximation of the definite integral   is less than 0.00001 using the Trapezoidal Rule.</strong> A) 49 B) 26 C) 73 D) 30 E) 15 <div style=padding-top: 35px> is less than 0.00001 using the Trapezoidal Rule.

A) 49
B) 26
C) 73
D) 30
E) 15
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/18
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Section 6: Integration
1
Use the error formula to estimate the error in approximating the integral <strong>Use the error formula to estimate the error in approximating the integral   with   using Simpson's Rule. Round your answer to six decimal places.</strong> A) 0.007084 B) 0.141676 C) 0.004723 D) 0.003936 E) 0.002530 with <strong>Use the error formula to estimate the error in approximating the integral   with   using Simpson's Rule. Round your answer to six decimal places.</strong> A) 0.007084 B) 0.141676 C) 0.004723 D) 0.003936 E) 0.002530 using Simpson's Rule. Round your answer to six decimal places.

A) 0.007084
B) 0.141676
C) 0.004723
D) 0.003936
E) 0.002530
0.003936
2
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   .

A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . B) The Trapezoidal rule gives 16.3400 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
The Trapezoidal rule gives The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives The Trapezoidal rule gives   and Simpson's rule gives   . .
3
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   .

A) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.3973 and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
The Trapezoidal rule gives The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives The Trapezoidal rule gives   and Simpson's rule gives   . .
4
Use the Trapezoidal Rule to approximate the value of the definite integral <strong>Use the Trapezoidal Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) -8.0654 B) -4.0327 C) -2.0164 D) -1.0082 E) -0.5041 with <strong>Use the Trapezoidal Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) -8.0654 B) -4.0327 C) -2.0164 D) -1.0082 E) -0.5041 . Round your answer to four decimal places.

A) -8.0654
B) -4.0327
C) -2.0164
D) -1.0082
E) -0.5041
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
5
Use a computer algebra system and Simpson's Rule with <strong>Use a computer algebra system and Simpson's Rule with   to approximate t in the integral equation   . Round your answer to three decimal places.</strong> A) 3.501 B) 3.581 C) 3.901 D) 3.529 E) 3.171 to approximate t in the integral equation <strong>Use a computer algebra system and Simpson's Rule with   to approximate t in the integral equation   . Round your answer to three decimal places.</strong> A) 3.501 B) 3.581 C) 3.901 D) 3.529 E) 3.171 . Round your answer to three decimal places.

A) 3.501
B) 3.581
C) 3.901
D) 3.529
E) 3.171
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
6
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   .

A) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . .
C) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . .
D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . .
E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives   and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives   and Simpson's rule gives   . D) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . E) The Trapezoidal rule gives 1.366795 and Simpson's rule gives   . .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
7
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   .

A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 43.377044 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
8
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using Simpson's Rule.</strong> A) 10 B) 16 C) 6 D) 8 E) 13 is less than 0.00001 using Simpson's Rule.

A) 10
B) 16
C) 6
D) 8
E) 13
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
9
Use Simpson's Rule to approximate the value of the definite integral <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   with <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   . Round your answer to four decimal places.

A) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
B) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
C) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
D) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
E) <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
10
Use Simpson's Rule with <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 to approximate <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 using the equation <strong>Use Simpson's Rule with   to approximate   using the equation   . Round your answer to five decimal places.</strong> A) 3.14159 B) 3.13595 C) 3.14723 D) 3.14381 E) 3.13937 . Round your answer to five decimal places.

A) 3.14159
B) 3.13595
C) 3.14723
D) 3.14381
E) 3.13937
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
11
Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   .

A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
B) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
D) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
E) The Trapezoidal rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . and Simpson's rule gives <strong>Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using   subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral.  </strong> A) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . B) The Trapezoidal rule gives   and Simpson's rule gives   . C) The Trapezoidal rule gives 0.7100 and Simpson's rule gives   . D) The Trapezoidal rule gives   and Simpson's rule gives   . E) The Trapezoidal rule gives   and Simpson's rule gives   . .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
12
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using the Trapezoidal Rule. Use a graphing utility to estimate the maximum of the absolute value of the second derivative.</strong> A) 208 B) 189 C) 196 D) 201 E) 188 is less than 0.00001 using the Trapezoidal Rule. Use a graphing utility to estimate the maximum of the absolute value of the second derivative.

A) 208
B) 189
C) 196
D) 201
E) 188
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
13
Find the smallest n such that the error estimate in the approximation of the definite integral <strong>Find the smallest n such that the error estimate in the approximation of the definite integral   is less than 0.00001 using Simpson's Rule.</strong> A) 48 B) 8 C) 11 D) 14 E) 19 is less than 0.00001 using Simpson's Rule.

A) 48
B) 8
C) 11
D) 14
E) 19
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
14
Use the Trapezoid Rule to approximate the value of the definite integral <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   wth <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)   . Round your answer to four decimal places.

A) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
B) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
C) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
D) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
E) <strong>Use the Trapezoid Rule to approximate the value of the definite integral   wth   . Round your answer to four decimal places.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
15
Use Simpson's Rule to approximate the value of the definite integral <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) 2.9784 B) 3.0627 C) 8.0100 D) 10.6800 E) 2.6700 with <strong>Use Simpson's Rule to approximate the value of the definite integral   with   . Round your answer to four decimal places.</strong> A) 2.9784 B) 3.0627 C) 8.0100 D) 10.6800 E) 2.6700 . Round your answer to four decimal places.

A) 2.9784
B) 3.0627
C) 8.0100
D) 10.6800
E) 2.6700
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
16
Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with <strong>Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with   when approximating the following integral.  </strong> A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013. B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200. C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200. D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000. E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000. when approximating the following integral. <strong>Estimate the error in using (a) the Trapezoidal Rule and (b) Simpson's Rule with   when approximating the following integral.  </strong> A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013. B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200. C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200. D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000. E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000.

A) The error for the Trapezoidal Rule is 0.0051 and for Simpson's Rule it is 0.0013.
B) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0200.
C) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0200.
D) The error for the Trapezoidal Rule is 0.0204 and for Simpson's Rule it is 0.0000.
E) The error for the Trapezoidal Rule is 0.0000 and for Simpson's Rule it is 0.0000.
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
17
Use the error formula to estimate the error in approximating the integral <strong>Use the error formula to estimate the error in approximating the integral   with   using Trapezoidal Rule.</strong> A) 3 B) 1 C) 6 D) 0 E) 9 with <strong>Use the error formula to estimate the error in approximating the integral   with   using Trapezoidal Rule.</strong> A) 3 B) 1 C) 6 D) 0 E) 9 using Trapezoidal Rule.

A) 3
B) 1
C) 6
D) 0
E) 9
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
18
Find the smallest n such that the error estimate from the error formula in the approximation of the definite integral <strong>Find the smallest n such that the error estimate from the error formula in the approximation of the definite integral   is less than 0.00001 using the Trapezoidal Rule.</strong> A) 49 B) 26 C) 73 D) 30 E) 15 is less than 0.00001 using the Trapezoidal Rule.

A) 49
B) 26
C) 73
D) 30
E) 15
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 18 flashcards in this deck.