Solved

In a Simple Linear Regression Problem,the Following Sum of Squares (yiyˉ)2=200\sum \left( y _ { i } - \bar { y } \right) ^ { 2 } = 200

Question 232

Multiple Choice

In a simple linear regression problem,the following sum of squares are produced: (yiyˉ) 2=200\sum \left( y _ { i } - \bar { y } \right) ^ { 2 } = 200 , (γiy^i) 2=50\sum \left( \gamma _ { i } - \hat { y } _ { i } \right) ^ { 2 } = 50 ,and (y~iyˉ) 2=150\sum \left( \tilde { y } _ { i } - \bar { y } \right) ^ { 2 } = 150 .The percentage of the variation in y that is explained by the variation in x is:


A) 25%
B) 75%
C) 33%
D) 50%

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions