Solved

To Estimate the Total Number of Successes in a Large p~±zα/2p~(1p~)/n\tilde { p } \pm z _ { \alpha / 2 } \sqrt { \tilde { p } ( 1 - \tilde { p } ) / n }

Question 50

Multiple Choice

To estimate the total number of successes in a large finite population of size N,using a sample of size n,the confidence interval estimator is:


A) p~±zα/2p~(1p~) /n\tilde { p } \pm z _ { \alpha / 2 } \sqrt { \tilde { p } ( 1 - \tilde { p } ) / n }
B) N[p~±zα/2p~(1p~) /n]N \left[ \tilde { p } \pm z _ { \alpha / 2 } \sqrt { \tilde { p } ( 1 - \tilde { p } ) / n } \right]
C) (N+n) [p~±za/2p~(1p~) /n]( N + n ) \left[ \tilde { p } \pm z _ { a / 2 } \sqrt { \tilde { p } ( 1 - \tilde { p } ) / n } \right]
D) (Nn) [p~±zα/2p~(1p~) /n]( N - n ) \left[ \tilde { p } \pm z _ { \alpha / 2 } \sqrt { \tilde { p } ( 1 - \tilde { p } ) / n } \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions