Solved

If You're Running a Multiple Regression of Employee Hours Worked i=1N( Hours ibm1 Tenure im2MBAi)N \frac{\sum_{i=1}^{N}\left(\text { Hours }_{i}-b-m_{1} \text { Tenure }_{i}-m_{2} M B A_{i}\right)}{N}

Question 24

Multiple Choice

If you're running a multiple regression of employee Hours Worked on Tenure (in number of years) and MBA (a binary variable equal to 1 for an employee with an MBA, 0 otherwise) , what moment conditions would not be used?


A)
i=1N( Hours ibm1 Tenure im2MBAi) N \frac{\sum_{i=1}^{N}\left(\text { Hours }_{i}-b-m_{1} \text { Tenure }_{i}-m_{2} M B A_{i}\right) }{N} = 0
B)
i=1N Hours ibm1 Tenure im2 MBA i)  Tenure iN \frac{\left. \sum _ { i = 1 } ^ { N } \text { Hours } _ { i } - b - m _ { 1 } \text { Tenure } _ { i } - m _ { 2 } \text { MBA } _ { i } \right) \text { Tenure } _ { i }}{N} = 0
C)

i=1N( Hours ibm1 Tenure i) MBAiN \frac{\sum _ { i = 1 } ^ { N } \left( \text { Hours } _ { i } - b - m _ { 1 } \text { Tenure } _ { i } \right) M B A _ { i }}{N} = 0
D) i=1NeiN\frac { \sum _ { i = 1 } ^ { N } e _ { i } } { N } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions