Solved

The Really Big Shoe Company Is a Manufacturer of Basketball

Question 34

Essay

The Really Big Shoe Company is a manufacturer of basketball shoes and football shoes.Ed Sullivan,the manager of marketing,must decide the best way to spend advertising resources.Each football team sponsored requires 120 pairs of shoes.Each basketball team requires 32 pairs of shoes.Football coaches receive $300,000 for shoe sponsorship and basketball coaches receive $1,000,000.Ed's promotional budget is $30,000,000.The Really Big Shoe Company has a very limited supply (4 liters or 4,000cc)of flubber,a rare and costly raw material used only in promotional athletic shoes.Each pair of basketball shoes requires 3cc of flubber,and each pair of football shoes requires 1cc of flubber.Ed desires to sponsor as many basketball and football teams as resources allow.However,he has already committed to sponsoring 19 football teams and wants to keep his promises.
a.Give a linear programming formulation for Ed.Make the variable definitions and constraints line up with the computer output appended to this exam.
b.Solve the problem graphically,showing constraints,feasible region,and isoprofit lines.Circle the optimal solution,making sure that the isoprofit lines drawn make clear why you chose this point.(Show all your calculations for plotting the constraints and isoprofit line on the left to get credit.)
 The Really Big Shoe Company is a manufacturer of basketball shoes and football shoes.Ed Sullivan,the manager of marketing,must decide the best way to spend advertising resources.Each football team sponsored requires 120 pairs of shoes.Each basketball team requires 32 pairs of shoes.Football coaches receive $300,000 for shoe sponsorship and basketball coaches receive $1,000,000.Ed's promotional budget is $30,000,000.The Really Big Shoe Company has a very limited supply (4 liters or 4,000cc)of flubber,a rare and costly raw material used only in promotional athletic shoes.Each pair of basketball shoes requires 3cc of flubber,and each pair of football shoes requires 1cc of flubber.Ed desires to sponsor as many basketball and football teams as resources allow.However,he has already committed to sponsoring 19 football teams and wants to keep his promises. a.Give a linear programming formulation for Ed.Make the variable definitions and constraints line up with the computer output appended to this exam. b.Solve the problem graphically,showing constraints,feasible region,and isoprofit lines.Circle the optimal solution,making sure that the isoprofit lines drawn make clear why you chose this point.(Show all your calculations for plotting the constraints and isoprofit line on the left to get credit.)     c.Solve algebraically for the corner point on the feasible region. d.Part of Ed's computer output is shown following.Give a full explanation of the meaning of the three numbers listed at the end.Based on your graphical and algebraic analysis,explain why these numbers make sense.(Hint: He formulated the budget constraint in terms of $000.) See the computer printout that follows. Solver-Linear Programming Solution   \begin{array} { r r r r } \text { Variable } & \begin{array} { r } \text { Variable } \\ \text { Label } \end{array} & \begin{array} { r } \text { Original } \\ \text { Value } \end{array} & \begin{array} { r } \text { Coefficient } \\ \text { Sensitivity } \end{array} \\ \text { Var1 } & 19.000 C & 1.000 C & 0 \\ \text { Var2 } & 17.9167 & 1.000 C & 0 \\ \text { Constraint } & \text { Original } & \text { Slack or } & \text { Shadow } \\ \text { Label } & \text { RHV } & \text { Surplus } & \text { Price } \\ \text { Const1 } & & & \\ \text { Const2 } & 19 & 0 & 0 \\ \text { Const3 } & 3000 \mathrm { C } & 6383 & 0.0104 \\ & 400 \mathrm { C } & 0 & 0 \end{array}  Objective Function  Value:                                                                 36.91666667   Sensitivity Analysis and Ranges Objective Function Coefficients   \begin{array}{l} \begin{array} { r r r r }  \begin{array} { r }  \text { Variable } \\ \text { Label } \end{array} & \begin{array} { r r r }  \text { Lower } & \text { Original } & \text { Upper } \\ \text { Limit } \end{array} & \text { Coefficient } & \text { Limit } \\ \text { Var1 } & \text { No Limit } & 1 & 1.25 \\ \text { Var2 } & 0.8 & 1 & \text { No Limit } \end{array}\\ \text { Right-Hand-Side Values }\\ \begin{array} { r r r r }  \text { Constraint } & \begin{array} { r }  \text { Lower } \\ \text { Label } \end{array} & \begin{array} { r }  \text { Original } \\ \text { Value } \end{array} & \begin{array} { r }  \text { Upper } \\ \text { Limit } \end{array} \\ \text { Const1 } & 12.2807 & 19 & 33.33333333 \\ \text { Const2 } & 23616.67 & 3000 \mathrm { C } & \text { No Limit } \\ \text { Const3 } & 228 \mathrm { C } & 400 \mathrm { C } & 4612.8 \end{array} \end{array}   First Number: The shadow price of 0.0104 for the  Const3  constraint. Second Number: The slack or surplus of 6383 for the  Const1  constraint. Third Number: The lower limit of 12.2807 for the  Const1  constraint.
c.Solve algebraically for the corner point on the feasible region.
d.Part of Ed's computer output is shown following.Give a full explanation of the meaning of the three numbers listed at the end.Based on your graphical and algebraic analysis,explain why these numbers make sense.(Hint: He formulated the budget constraint in terms of $000.)
See the computer printout that follows.
Solver-Linear Programming
Solution
 Variable  Variable  Label  Original  Value  Coefficient  Sensitivity  Var1 19.000C1.000C0 Var2 17.91671.000C0 Constraint  Original  Slack or  Shadow  Label  RHV  Surplus  Price  Const1  Const2 1900 Const3 3000C63830.0104400C00\begin{array} { r r r r } \text { Variable } & \begin{array} { r } \text { Variable } \\ \text { Label } \end{array} & \begin{array} { r } \text { Original } \\ \text { Value } \end{array} & \begin{array} { r } \text { Coefficient } \\ \text { Sensitivity } \end{array} \\ \text { Var1 } & 19.000 C & 1.000 C & 0 \\ \text { Var2 } & 17.9167 & 1.000 C & 0 \\ \text { Constraint } & \text { Original } & \text { Slack or } & \text { Shadow } \\ \text { Label } & \text { RHV } & \text { Surplus } & \text { Price } \\ \text { Const1 } & & & \\ \text { Const2 } & 19 & 0 & 0 \\ \text { Const3 } & 3000 \mathrm { C } & 6383 & 0.0104 \\ & 400 \mathrm { C } & 0 & 0 \end{array}
Objective Function
Value:                                                                 36.9166666736.91666667
Sensitivity Analysis and Ranges
Objective Function Coefficients
 Variable  Label  Lower  Original  Upper  Limit  Coefficient  Limit  Var1  No Limit 11.25 Var2 0.81 No Limit  Right-Hand-Side Values  Constraint  Lower  Label  Original  Value  Upper  Limit  Const1 12.28071933.33333333 Const2 23616.673000C No Limit  Const3 228C400C4612.8\begin{array}{l}\begin{array} { r r r r } \begin{array} { r } \text { Variable } \\\text { Label }\end{array} & \begin{array} { r r r } \text { Lower } & \text { Original } & \text { Upper } \\\text { Limit }\end{array} & \text { Coefficient } & \text { Limit } \\\text { Var1 } & \text { No Limit } & 1 & 1.25 \\\text { Var2 } & 0.8 & 1 & \text { No Limit }\end{array}\\\text { Right-Hand-Side Values }\\\begin{array} { r r r r } \text { Constraint } & \begin{array} { r } \text { Lower } \\\text { Label }\end{array} & \begin{array} { r } \text { Original } \\\text { Value }\end{array} & \begin{array} { r } \text { Upper } \\\text { Limit }\end{array} \\\text { Const1 } & 12.2807 & 19 & 33.33333333 \\\text { Const2 } & 23616.67 & 3000 \mathrm { C } & \text { No Limit } \\\text { Const3 } & 228 \mathrm { C } & 400 \mathrm { C } & 4612.8\end{array}\end{array}
First Number: The shadow price of 0.0104 for the "Const3" constraint.
Second Number: The slack or surplus of 6383 for the "Const1" constraint.
Third Number: The lower limit of 12.2807 for the "Const1" constraint.

Correct Answer:

verifed

Verified

a.LetX1 = the number of football teams spo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions