menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Early Transcendentals Study Set 1
  4. Exam
    Exam 13: Partial Derivatives
  5. Question
    Let Z = 5 + 4 Sin(x<sup>2</sup>y<sup>4</sup>)
Solved

Let Z = 5 + 4 Sin(x2y4)

Question 35

Question 35

Multiple Choice

Let z = 5 + 4 sin(x2y4) . Find Let z = 5 + 4 sin(x<sup>2</sup>y<sup>4</sup>) . Find   . A)    B)  2xy<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  C)  y<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  D)  16x<sup>2</sup>y<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  E)  x<sup>2</sup> cos(x<sup>2</sup>y<sup>4</sup>) .


A) Let z = 5 + 4 sin(x<sup>2</sup>y<sup>4</sup>) . Find   . A)    B)  2xy<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  C)  y<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  D)  16x<sup>2</sup>y<sup>3</sup> cos(x<sup>2</sup>y<sup>4</sup>)  E)  x<sup>2</sup> cos(x<sup>2</sup>y<sup>4</sup>)
B) 2xy3 cos(x2y4)
C) y3 cos(x2y4)
D) 16x2y3 cos(x2y4)
E) x2 cos(x2y4)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q30: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6988/.jpg" alt="Let ;

Q31: Use the chain rule to find <img

Q32: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6988/.jpg" alt="Let .

Q33: A rectangular box is to contain <img

Q34: Evaluate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6988/.jpg" alt="Evaluate ."

Q36: Sketch the graph of <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6988/.jpg" alt="Sketch

Q37: Find the equations of the tangent plane

Q38: Use Lagrange multipliers to find the maximum

Q39: Find parametric equations for the normal line

Q40: Find d <span class="ql-formula" data-value="

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines