Solved

Alan Bissell, a Market Analyst for City Sound Online Mart

Question 16

Multiple Choice

Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's) , and his independent variables are website visitors (in 1,000's) and type of download format requested (0 = MP3, 1 = other) .Regression analysis of the data yielded the following tables.  Coefficients  Stardard  Error t Statistic p-value  Intercept 1.70.3842124.4246380.00166x1 (website visitors)  0.040.0140292.8511460.019054x2 (download fommat)  1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \begin{array} { c } \text { Stardard } \\\text { Error }\end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline \boldsymbol { x } _ { 1 } \text { (website visitors) } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\\hline \mathbf { x } _ { 2 } \text { (download fommat) } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\\hline\end{array} Alan's model is ________________.


A)  Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's) , and his independent variables are website visitors (in 1,000's) and type of download format requested (0 = MP3, 1 = other) .Regression analysis of the data yielded the following tables.  \begin{array} { | c | c | c | c | c | }  \hline & \text { Coefficients } & \begin{array} { c }  \text { Stardard } \\ \text { Error } \end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\ \hline \boldsymbol { x } _ { 1 } \text { (website visitors)  } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\ \hline \mathbf { x } _ { 2 } \text { (download fommat)  } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\ \hline \end{array}  Alan's model is ________________. A)   = 1.7 + 0.384212<sub> </sub>x<sub>1</sub> + 4.424638<sub> </sub>x<sub>2</sub> + 0.00166 x<sub>3</sub> B)   = 1.7 + 0.04 x<sub>1 </sub>+ 1.5666667 x<sub>2</sub> C)   = 0.384212 + 0.014029 x<sub>1 </sub>+ 0.20518 x<sub>2</sub> D)   = 4.424638 + 2.851146 x<sub>1 </sub>- 7.63558 x<sub>2</sub> E)   = 1.7 + 0.04 x<sub>1 </sub>- 1.5666667 x<sub>2</sub> = 1.7 + 0.384212 x1 + 4.424638 x2 + 0.00166 x3
B) 11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 + 1.5666667 x2
C) 11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 0.384212 + 0.014029 x1 + 0.20518 x2
D) 11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 4.424638 + 2.851146 x1 - 7.63558 x2
E) 11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 - 1.5666667 x2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions