Solved

Abby Kratz, a Market Specialist at the Market Research Firm

Question 31

Multiple Choice

Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is monthly household expenditures on groceries (in $'s) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables.  Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is monthly household expenditures on groceries (in  <br> <span class= Soures  df  SS  MS F Regressium 176850.9916850.9919.3444 Retidual 97839.915871.10017 Total 1024690.91\begin{array}{|c|c|c|c|c|}\hline \text { Soures } & \text { df } & \text { SS } & \text { MS } & F \\\hline \text { Regressium } & 1 & 76850.99 & 16850.99 & 19.3444 \\\hline \text { Retidual } & 9 & 7839.915 & 871.10017 & \\\hline \text { Total } & 10 & 24690.91 & & \\\hline\end{array}Se=29.51448r2=0.682478\begin{array} { | l | } \hline S _ { \mathrm { e} } = 29.51448 \\\hline r ^ { 2 } = 0.682478 \\\hline\end{array} Using α\alpha = 0.05, Abby should ________________.
A) reject H0: β\beta 1 = 0
B) not reject H0: β\beta 1 = 0
C) increase the sample size
D) suspend judgment
E) reject H0: β\beta 0 = 0s) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables. \begin{array}{|c|c|c|c|c|} \hline \text { Soures } & \text { df } & \text { SS } & \text { MS } & F \\ \hline \text { Regressium } & 1 & 76850.99 & 16850.99 & 19.3444 \\ \hline \text { Retidual } & 9 & 7839.915 & 871.10017 & \\ \hline \text { Total } & 10 & 24690.91 & & \\ \hline \end{array}\begin{array} { | l | } \hline S _ { \mathrm { e} } = 29.51448 \\ \hline r ^ { 2 } = 0.682478 \\ \hline \end{array} Using \alpha = 0.05, Abby should ________________. A) reject H0: \beta 1 = 0 B) not reject H0: \beta 1 = 0 C) increase the sample size D) suspend judgment E) reject H0: \beta 0 = 0 " class="answers-bank-image d-block" rel="preload" >
 Soures  df  SS  MS F Regressium 176850.9916850.9919.3444 Retidual 97839.915871.10017 Total 1024690.91\begin{array}{|c|c|c|c|c|}\hline \text { Soures } & \text { df } & \text { SS } & \text { MS } & F \\\hline \text { Regressium } & 1 & 76850.99 & 16850.99 & 19.3444 \\\hline \text { Retidual } & 9 & 7839.915 & 871.10017 & \\\hline \text { Total } & 10 & 24690.91 & & \\\hline\end{array}Se=29.51448r2=0.682478\begin{array} { | l | } \hline S _ { \mathrm { e} } = 29.51448 \\\hline r ^ { 2 } = 0.682478 \\\hline\end{array} Using α\alpha = 0.05, Abby should ________________.


A) reject H0: β\beta 1 = 0
B) not reject H0: β\beta 1 = 0
C) increase the sample size
D) suspend judgment
E) reject H0: β\beta 0 = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions