Multiple Choice
The acf is clearly declining very slowly in this case, which is consistent with their being an autoregressive part to the appropriate model. The pacf is clearly significant for lags one and two, but the question is does it them become insignificant for lags 2 and 4, indicating an AR(2) process, or does it remain significant, which would be more consistent with a mixed ARMA process? Well, given the huge size of the sample that gave rise to this acf and pacf, even a pacf value of 0.001 would still be statistically significant. Thus an ARMA process is the most likely candidate, although note that it would not be possible to tell from the acf and pacf which model from the ARMA family was more appropriate. The DGP for the data that generated this plot was y_t = 0.9 y_(t-1) - 0.3 u_(t-1) + u_t.
-Which of the following models can be estimated using ordinary least squares? (i) An AR(1)
(ii) An ARMA(2,0)
(iii) An MA(1)
(iv) An ARMA(1,1)
A) (i) only
B) (i) and (ii) only
C) (i) , (ii) , and (iii) only
D) (i) , (ii) , (iii) , and (iv) .
Correct Answer:

Verified
Correct Answer:
Verified
Q10: What type of a process is ?
Q11: Which of these is not a consequence
Q12: Which of the following conditions must hold
Q13: Consider the following model estimated for
Q14: Consider the following picture and suggest the
Q16: If a series, y<sub>t</sub>, follows a random
Q17: A rolling window forecasting framework is one
Q18: The acf is clearly declining very slowly
Q19: Consider the following MA(2) process where the
Q20: Which of the following statements are true