Solved

In ANOVA the Relative Contribution of a Factor X Is mx2=SSX/(c1)SSerror/(Nc)\mathrm { m } _ { x } ^ { 2 } = \frac { S S _ { \underline { X } } / ( \mathrm { c } - 1 ) } { \mathrm { SSerror } / ( \mathrm { N } - c ) }

Question 46

Short Answer

In ANOVA the relative contribution of a factor X is calculated as . A) mx2=SSX/(c1)SSerror/(Nc)\mathrm { m } _ { x } ^ { 2 } = \frac { S S _ { \underline { X } } / ( \mathrm { c } - 1 ) } { \mathrm { SSerror } / ( \mathrm { N } - c ) }

B) m2x=SSx/dfxSSerrorm ^ { 2 } x = \frac { S S x / d f x } { S S _ { e r r o r } }

C) m2x=SSxSStotal +MMerror x×Serror )m ^ { 2 } x = \frac { S S x } { \left. S S _ { \text {total } } + M M _ { \text {error } } x \times S _ { \text {error } } \right) }

D) m2×=(SSχ1+SSχ2+SSχ1×2)/dfχ1SStotal +MSerror \mathrm { m } ^ { 2 } \times = \frac { \left( S S _ { \chi 1 } + S S _ { \chi 2 } + S S _ { \chi 1 \times 2 } \right) / d f _ { \chi 1 } } { S S _ { \text {total } } + M S _ { \text {error } } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions