Solved

A Company Is Planning Production for the Next 4 Quarters

Question 64

Essay

A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter.
Quarter 1234 Unit Production Cost $55$50$50$45 Units Demanded 100150180120 Maramum Praduction 150150160130 Holding cost $2.2$2$2$1.8\begin{array}{l}\text {\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Quarter }\\\begin{array} { l c c c c } & 1 & 2 & 3 & 4 \\\hline \text { Unit Production Cost } & \$ 55 & \$ 50 & \$ 50 & \$ 45 \\\text { Units Demanded } & 100 & 150 & 180 & 120 \\\text { Maramum Praduction } & 150 & 150 & 160 & 130 \\\text { Holding cost } & \$ 2.2 & \$ 2 & \$ 2 & \$ 1.8\end{array}\end{array}  Let Pi= number of units produced in quarter i,i=1,,4Bi= beginning inventory far quarter i\begin{array} { l } \text { Let } \quad P _ { i } = \text { number of units produced in quarter } i , i = 1 , \ldots , 4 \\\mathbf { B } _ { i } = \text { beginning inventory far quarter } i \\\end{array}

 MIN: 55P1+50P2+50P3+45P4+2.2( B1+B2)/2+2( B2+B3)/2+2( B3+B4)/2+1.8( B4+B5)/2 Subject to: 75P115075P215080P316065P413050B1+P110010050B2+P215010050B3+P318010050B4+P4120100 B2=B1+P1100 B3=B2+P2150 B4=B3+P3180 B5=B4+P4120PiBi0\begin{array}{ll}\text { MIN: } & 55 \mathrm{P}_{1}+50 \mathrm{P}_{2}+50 \mathrm{P}_{3}+45 \mathrm{P}_{4}+ \\& 2.2\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right) / 2+2\left(\mathrm{~B}_{2}+\mathrm{B}_{3}\right) / 2+2\left(\mathrm{~B}_{3}+\mathrm{B}_{4}\right) / 2+1.8\left(\mathrm{~B}_{4}+\mathrm{B}_{5}\right) / 2 \\\text { Subject to: } & 75 \leq \mathrm{P}_{1} \leq 150 \\&75 \leq \mathrm{P}_{2} \leq 150 \\& 80 \leq \mathrm{P}_{3} \leq 160 \\& 65 \leq \mathrm{P}_{4} \leq 130 \\& 50 \leq \mathrm{B}_{1}+\mathrm{P}_{1}-100 \leq 100 \\& 50 \leq \mathrm{B}_{2}+\mathrm{P}_{2}-150 \leq 100 \\& 50 \leq \mathrm{B}_{3}+\mathrm{P}_{3}-180 \leq 100 \\& 50 \leq \mathrm{B}_{4}+\mathrm{P}_{4}-120 \leq 100 \\&\mathrm{~B}_{2}=\mathrm{B}_{1}+\mathrm{P}_{1}-100 \\& \mathrm{~B}_{3}=\mathrm{B}_{2}+\mathrm{P}_{2}-150 \\&\mathrm{~B}_{4}=\mathrm{B}_{3}+\mathrm{P}_{3}-180 \\& \mathrm{~B}_{5}=\mathrm{B}_{4}+\mathrm{P}_{4}-120 \\& \mathrm{P}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}} \geq 0\end{array}  A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter.   \begin{array}{l} \text {\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Quarter }\\ \begin{array} { l c c c c }   & 1 & 2 & 3 & 4 \\ \hline \text { Unit Production Cost } & \$ 55 & \$ 50 & \$ 50 & \$ 45 \\ \text { Units Demanded } & 100 & 150 & 180 & 120 \\ \text { Maramum Praduction } & 150 & 150 & 160 & 130 \\ \text { Holding cost } & \$ 2.2 & \$ 2 & \$ 2 & \$ 1.8 \end{array} \end{array}   \begin{array} { l }  \text { Let } \quad P _ { i } = \text { number of units produced in quarter } i , i = 1 , \ldots , 4 \\ \mathbf { B } _ { i } = \text { beginning inventory far quarter } i \\ \end{array}    \begin{array}{ll} \text { MIN: } & 55 \mathrm{P}_{1}+50 \mathrm{P}_{2}+50 \mathrm{P}_{3}+45 \mathrm{P}_{4}+ \\ & 2.2\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right) / 2+2\left(\mathrm{~B}_{2}+\mathrm{B}_{3}\right) / 2+2\left(\mathrm{~B}_{3}+\mathrm{B}_{4}\right) / 2+1.8\left(\mathrm{~B}_{4}+\mathrm{B}_{5}\right) / 2 \\ \text { Subject to: } & 75 \leq \mathrm{P}_{1} \leq 150 \\ &75 \leq \mathrm{P}_{2} \leq 150 \\ & 80 \leq \mathrm{P}_{3} \leq 160 \\ & 65 \leq \mathrm{P}_{4} \leq 130 \\ & 50 \leq \mathrm{B}_{1}+\mathrm{P}_{1}-100 \leq 100 \\ & 50 \leq \mathrm{B}_{2}+\mathrm{P}_{2}-150 \leq 100 \\ & 50 \leq \mathrm{B}_{3}+\mathrm{P}_{3}-180 \leq 100 \\ & 50 \leq \mathrm{B}_{4}+\mathrm{P}_{4}-120 \leq 100 \\ &\mathrm{~B}_{2}=\mathrm{B}_{1}+\mathrm{P}_{1}-100 \\ & \mathrm{~B}_{3}=\mathrm{B}_{2}+\mathrm{P}_{2}-150 \\ &\mathrm{~B}_{4}=\mathrm{B}_{3}+\mathrm{P}_{3}-180 \\ & \mathrm{~B}_{5}=\mathrm{B}_{4}+\mathrm{P}_{4}-120 \\ & \mathrm{P}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}} \geq 0 \end{array}    What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation? What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions