Solved

A Cellular Phone Company Wants to Locate Two New Communications \quad

Question 50

Essay

A cellular phone company wants to locate two new communications towers to cover 4 regions. The company wants to minimize the cost of installing the two towers. The regions that can be covered by each tower site are indicated by a 1 in the following table:
\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Tower Sites \underline{\text { Tower Sites }}
 Region 1234 A 11 B 111 C 111 D 11 COST ($000 s)200150190250\begin{array}{ccccc}\text { Region } & 1 & 2 & 3 & 4 \\\hline \text { A } & & 1 & & 1 \\\text { B } & 1 & & 1 & 1 \\\text { C } & 1 & 1 & 1 & \\\text { D } & 1 & & & 1 \\\hline \text { COST }(\$ 000 \mathrm{~s}) & 200 & 150 & 190 & 250\end{array}

 MIN: 200X1+150X2+190X3+250X4\text { MIN: } \quad 200 \mathrm{X}_{1}+150 \mathrm{X}_{2}+190 \mathrm{X}_{3}+250 \mathrm{X}_{4}

 Subject to:\text { Subject to:}
X2+X41X1+X3+X41X1+X2+X31X1+X41X1+X2+X3+X4=2Xi=0,1\begin{array}{l}\mathrm{X}_{2}+\mathrm{X}_{4} \geq 1 \\\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{4} \geq 1 \\\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3} \geq 1 \\\mathrm{X}_{1}+\mathrm{X}_{4} \geq 1 \\\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}=2 \\\mathrm{X}_{\mathrm{i}}=0,1\end{array} Based on this ILP formulation of the problem what formulas should go in cells F6:F14 of the following Excel spreadsheet?
 A cellular phone company wants to locate two new communications towers to cover 4 regions. The company wants to minimize the cost of installing the two towers. The regions that can be covered by each tower site are indicated by a 1 in the following table:   \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \underline{\text { Tower Sites }}   \begin{array}{ccccc} \text { Region } & 1 & 2 & 3 & 4 \\ \hline \text { A } & & 1 & & 1 \\ \text { B } & 1 & & 1 & 1 \\ \text { C } & 1 & 1 & 1 & \\ \text { D } & 1 & & & 1 \\ \hline \text { COST }(\$ 000 \mathrm{~s}) & 200 & 150 & 190 & 250 \end{array}     \text { MIN: } \quad 200 \mathrm{X}_{1}+150 \mathrm{X}_{2}+190 \mathrm{X}_{3}+250 \mathrm{X}_{4}    \text { Subject to:}    \begin{array}{l} \mathrm{X}_{2}+\mathrm{X}_{4} \geq 1 \\ \mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{4} \geq 1 \\ \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3} \geq 1 \\ \mathrm{X}_{1}+\mathrm{X}_{4} \geq 1 \\ \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}=2 \\ \mathrm{X}_{\mathrm{i}}=0,1 \end{array}   Based on this ILP formulation of the problem what formulas should go in cells F6:F14 of the following Excel spreadsheet?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions