Solved

Determine Whether the Function Has an Inverse Function f(x)={8x+13,x<2(x+2)23,x2f ( x ) = \left\{ \begin{array} { l } 8 x + 13 , x < - 2 \\( x + 2 ) ^ { 2 } - 3 , x \geq - 2\end{array} \right.

Question 181

Multiple Choice

Determine whether the function has an inverse function.If it does, find the inverse function. f(x) ={8x+13,x<2(x+2) 23,x2f ( x ) = \left\{ \begin{array} { l } 8 x + 13 , x < - 2 \\( x + 2 ) ^ { 2 } - 3 , x \geq - 2\end{array} \right.


A) f1(x) ={x138,x<2x+32,x2f ^ { - 1 } ( x ) = \left\{ \begin{array} { l } \frac { x - 13 } { 8 } , x < - 2 \\\sqrt { x + 3 } - 2 , x \geq - 2\end{array} \right.
B) f1(x) ={x138,x<2x+1,x2f ^ { - 1 } ( x ) = \left\{ \begin{array} { c } \frac { x - 13 } { 8 } , x < - 2 \\\sqrt { x + 1 } , x \geq - 2\end{array} \right.
C) f1(x) ={x138,x<3x+32,x3f ^ { - 1 } ( x ) = \left\{ \begin{array} { l } \frac { x - 13 } { 8 } , x < - 3 \\\sqrt { x + 3 } - 2 , x \geq - 3\end{array} \right.
D) f1(x) ={x+138,x<3x+32,x3f ^ { - 1 } ( x ) = \left\{ \begin{array} { l } \frac { x + 13 } { 8 } , x < - 3 \\\sqrt { x + 3 } - 2 , x \geq - 3\end{array} \right.
E) No inverse function exists.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions