Solved

Determine the Intervals Over Which the Function Is Increasing, Decreasing f(x)={x2,x<1x22x+2,x1f ( x ) = \left\{ \begin{array} { l } - x ^ { 2 } , x < 1 \\x ^ { 2 } - 2 x + 2 , x \geq 1\end{array} \right.

Question 394

Multiple Choice

Determine the intervals over which the function is increasing, decreasing, or constant. f(x) ={x2,x<1x22x+2,x1f ( x ) = \left\{ \begin{array} { l } - x ^ { 2 } , x < 1 \\x ^ { 2 } - 2 x + 2 , x \geq 1\end{array} \right.  Determine the intervals over which the function is increasing, decreasing, or constant.  f ( x )  = \left\{ \begin{array} { l }  - x ^ { 2 } , x < 1 \\ x ^ { 2 } - 2 x + 2 , x \geq 1 \end{array} \right.    A)  constant on (- \infty , 0) increasing on (0,  \infty )   B) increasing on (- \infty , 0) , (1,  \infty ) descreasing on (0, 1)  C)  constant on (- \infty , 1) increasing on (1,  \infty )   D)  constant on (- \infty , 1) descreasing on (1,  \infty )   E)  constant on (- \infty , 0) descreasing on (0, 1)


A) constant on (- \infty , 0) increasing on (0, \infty )
B) increasing on (- \infty , 0) , (1, \infty ) descreasing on (0, 1)
C) constant on (- \infty , 1) increasing on (1, \infty )
D) constant on (- \infty , 1) descreasing on (1, \infty )
E) constant on (- \infty , 0) descreasing on (0, 1)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions