Solved

Use a Graphing Utility to Graph the Equation y=5x2x2+25y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }

Question 24

Multiple Choice

Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.
Equation: y=5x2x2+25y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }
Inequality: y2y \leq 2


A)  Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.   Equation:  y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }    Inequality:  y \leq 2   A)      - \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }  B)      - \infty < x < \infty  C)     - \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }  D)     - \infty < x \leq \frac { \sqrt { 3 } } { 3 }  E)     - \infty < x \leq 5 \sqrt { 3 } <x533- \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }
B)  Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.   Equation:  y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }    Inequality:  y \leq 2   A)      - \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }  B)      - \infty < x < \infty  C)     - \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }  D)     - \infty < x \leq \frac { \sqrt { 3 } } { 3 }  E)     - \infty < x \leq 5 \sqrt { 3 } <x<- \infty < x < \infty
C)  Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.   Equation:  y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }    Inequality:  y \leq 2   A)      - \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }  B)      - \infty < x < \infty  C)     - \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }  D)     - \infty < x \leq \frac { \sqrt { 3 } } { 3 }  E)     - \infty < x \leq 5 \sqrt { 3 } 533x533- \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }
D)  Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.   Equation:  y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }    Inequality:  y \leq 2   A)      - \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }  B)      - \infty < x < \infty  C)     - \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }  D)     - \infty < x \leq \frac { \sqrt { 3 } } { 3 }  E)     - \infty < x \leq 5 \sqrt { 3 } <x33- \infty < x \leq \frac { \sqrt { 3 } } { 3 }
E)  Use a graphing utility to graph the equation.Use the graph to approximate the values of x that satisfy each inequality.   Equation:  y = \frac { 5 x ^ { 2 } } { x ^ { 2 } + 25 }    Inequality:  y \leq 2   A)      - \infty < x \leq \frac { 5 \sqrt { 3 } } { 3 }  B)      - \infty < x < \infty  C)     - \frac { 5 \sqrt { 3 } } { 3 } \leq x \leq \frac { 5 \sqrt { 3 } } { 3 }  D)     - \infty < x \leq \frac { \sqrt { 3 } } { 3 }  E)     - \infty < x \leq 5 \sqrt { 3 } <x53- \infty < x \leq 5 \sqrt { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions