menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Precalculus with Limits
  4. Exam
    Exam 3: Exponential and Logarithmic Functions
  5. Question
    Select the Graph of the Function\(f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { - x }\)
Solved

Select the Graph of the Function f(x)=(15)−xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { - x }f(x)=(51​)−x

Question 140

Question 140

Multiple Choice

Select the graph of the function. f(x) =(15) −xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { - x }f(x) =(51​) −x


A)  Select the graph of the function.   f ( x )  = \left( \frac { 1 } { 5 } \right)  ^ { - x }   A)    B)    C)    D)    E)
B)  Select the graph of the function.   f ( x )  = \left( \frac { 1 } { 5 } \right)  ^ { - x }   A)    B)    C)    D)    E)
C)  Select the graph of the function.   f ( x )  = \left( \frac { 1 } { 5 } \right)  ^ { - x }   A)    B)    C)    D)    E)
D)  Select the graph of the function.   f ( x )  = \left( \frac { 1 } { 5 } \right)  ^ { - x }   A)    B)    C)    D)    E)
E)  Select the graph of the function.   f ( x )  = \left( \frac { 1 } { 5 } \right)  ^ { - x }   A)    B)    C)    D)    E)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q135: Rewrite the logarithm as a ratio

Q136: Write the logarithmic equation in exponential

Q137: Rewrite the logarithm as a ratio

Q138: Solve the logarithmic equation algebraically.Approximate the

Q139: Select the correct graph for the

Q141: Identify the value of the function

Q142: Condense the expression <span class="ql-formula"

Q143: Assume that x is a positive

Q144: Complete the table to determine the

Q145: Use the One-to-One Property to solve

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines