menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Precalculus with Limits
  4. Exam
    Exam 3: Exponential and Logarithmic Functions
  5. Question
    Identify the Graph of the Function\(f ( x ) = \left( \frac { 1 } { 7 } \right) ^ { x }\)
Solved

Identify the Graph of the Function f(x)=(17)xf ( x ) = \left( \frac { 1 } { 7 } \right) ^ { x }f(x)=(71​)x

Question 162

Question 162

Multiple Choice

Identify the graph of the function. f(x) =(17) xf ( x ) = \left( \frac { 1 } { 7 } \right) ^ { x }f(x) =(71​) x


A)  Identify the graph of the function.   f ( x )  = \left( \frac { 1 } { 7 } \right)  ^ { x }  A)    B)    C)    D)    E)
B)  Identify the graph of the function.   f ( x )  = \left( \frac { 1 } { 7 } \right)  ^ { x }  A)    B)    C)    D)    E)
C)  Identify the graph of the function.   f ( x )  = \left( \frac { 1 } { 7 } \right)  ^ { x }  A)    B)    C)    D)    E)
D)  Identify the graph of the function.   f ( x )  = \left( \frac { 1 } { 7 } \right)  ^ { x }  A)    B)    C)    D)    E)
E)  Identify the graph of the function.   f ( x )  = \left( \frac { 1 } { 7 } \right)  ^ { x }  A)    B)    C)    D)    E)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q51: Find the exact value of the logarithmic

Q149: given that f(x) = ln x.<br>​<br>f(x -

Q157: Rewrite the logarithm as a ratio

Q158: Use the properties of logarithms to

Q159: Select the graph of the function.

Q160: Use a graphing utility to construct

Q161: Solve the exponential equation algebraically.Approximate the

Q164: Simplify the expression. <span

Q166: Write the logarithmic equation in exponential

Q167: Find the exponential model <span

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines