Solved

Find the Point (X, Y) on the Unit Circle That t=19π3t = \frac { 19 \pi } { 3 }

Question 99

Multiple Choice

Find the point (x, y) on the unit circle that corresponds to the real number t. t=19π3t = \frac { 19 \pi } { 3 }


A) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
C) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
D) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
E) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions