Solved

Evaluate (If Possible) the Sine, Cosine, and Tangent of the Real

Question 65

Multiple Choice

Evaluate (if possible) the sine, cosine, and tangent of the real number. t=3π2t = - \frac { 3 \pi } { 2 }


A) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(0,0) ( x , y ) = ( 0,0 ) . sin(3π2) =0cos(3π2) =0tan(3π2) =0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(1,0) ( x , y ) = ( 1,0 ) . sin(3π2) =1cos(3π2) =0tan(3π2) =0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
C) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0,1 ) . sin(3π2) =1cos(3π2) =0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
tan(3π2) \tan \left( - \frac { 3 \pi } { 2 } \right) is undefined.
D) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(1,0) ( x , y ) = ( 1,0 ) . sin(3π2) =0cos(3π2) =1tan(3π2) =0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\cos \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
E) Not possible

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions