Solved

Use the Formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )

Question 198

Multiple Choice

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C) a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a) ,a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C) y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta


A) 6106 \sqrt { 10 } sin(θ0.3218) \sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218) \sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218) \sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218) \sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218) \sin ( \theta + 0.3218 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions