Solved

Use the Formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )

Question 221

Multiple Choice

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC) a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b) ,a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC) y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta


A) 58\sqrt { 58 } cos(2θ+0.4049) \cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049) \cos ( 2 \theta - 0.4049 )
C) 7 cos(2θ0.4049) \cos ( 2 \theta - 0.4049 )
D) 3 cos(2θ0.4049) \cos ( 2 \theta - 0.4049 )
E) 3 cos(2θ+0.4049) \cos ( 2 \theta + 0.4049 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions