Solved

Solve the Following Equation x=π5+2nπx = \frac { \pi } { 5 } + 2 n \pi

Question 78

Multiple Choice

Solve the following equation.
Secx - 2 = 0


A) x=π5+2nπx = \frac { \pi } { 5 } + 2 n \pi and x=7π5+2nπx = \frac { 7 \pi } { 5 } + 2 n \pi , where n is a integer
B) x=π3+2nπx = \frac { \pi } { 3 } + 2 n \pi and x=5π3+2nπx = \frac { 5 \pi } { 3 } + 2 n \pi , where n is a integer
C) x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=7π6+2nπx = \frac { 7 \pi } { 6 } + 2 n \pi , where n is a integer
D) x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=5π6+2nπx = \frac { 5 \pi } { 6 } + 2 n \pi , where n is a integer
E) x=π4+2nπx = \frac { \pi } { 4 } + 2 n \pi and x=5π4+2nπx = \frac { 5 \pi } { 4 } + 2 n \pi , where n is a integer

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions