Solved

Use the Given Values to Evaluate (If Possible) Three Trigonometric cos(π2x)=817,cosx=1517\cos \left( \frac { \pi } { 2 } - x \right) = \frac { 8 } { 17 } , \cos x = \frac { 15 } { 17 }

Question 148

Multiple Choice

Use the given values to evaluate (if possible) three trigonometric functions csc x, tan x, cot x.
cos(π2x) =817,cosx=1517\cos \left( \frac { \pi } { 2 } - x \right) = \frac { 8 } { 17 } , \cos x = \frac { 15 } { 17 }


A) cscx=85tanx=815cotx=158\begin{array} { l } \csc x = - \frac { 8 } { 5 } \\\tan x = - \frac { 8 } { 15 } \\\cot x = - \frac { 15 } { 8 }\end{array}
B) cscx=158tanx=815cotx=158\begin{array} { l } \csc x = - \frac { 15 } { 8 } \\\tan x = \frac { 8 } { 15 } \\\cot x = \frac { 15 } { 8 }\end{array}
C) cscx=158tanx=815cotx=158\begin{array} { l } \csc x = \frac { 15 } { 8 } \\\tan x = - \frac { 8 } { 15 } \\\cot x = \frac { 15 } { 8 }\end{array}
D) cscx=178tanx=815cotx=158\begin{array} { l } \csc x = \frac { 17 } { 8 } \\\tan x = \frac { 8 } { 15 } \\\cot x = \frac { 15 } { 8 }\end{array}
E) cscx=58tanx=815cotx=158\begin{array} { l } \csc x = \frac { 5 } { 8 } \\\tan x = \frac { 8 } { 15 } \\\cot x = - \frac { 15 } { 8 }\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions