Solved

Use the Trigonometric Substitution to Rewrite the Algebraic Expression as a Trigonometric

Question 38

Multiple Choice

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ\theta , where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .Then find sin θ\theta and cos θ\theta .
4=64x2,x=8sinθ4 = \sqrt { 64 - x ^ { 2 } } , x = 8 \sin \theta


A) 64sinθ=4;sinθ=±32;cosθ=1264 \sin \theta = 4 ; \sin \theta = \pm \frac { \sqrt { 3 } } { 2 } ; \cos \theta = \frac { 1 } { 2 }
B) 64cosθ=4;sinθ=±32;cosθ=1264 \cos \theta = 4 ; \sin \theta = \pm \frac { \sqrt { 3 } } { 2 } ; \cos \theta = \frac { 1 } { 2 }
C) 8sinθ=4;sinθ=±32;cosθ=128 \sin \theta = 4 ; \sin \theta = \pm \frac { \sqrt { 3 } } { 2 } ; \cos \theta = \frac { 1 } { 2 }
D) 8cosθ=4;sinθ=±32;cosθ=128 \cos \theta = 4 ; \sin \theta = \pm \frac { \sqrt { 3 } } { 2 } ; \cos \theta = \frac { 1 } { 2 }
E) 8cosθ=4;sinθ=12;cosθ=±328 \cos \theta = 4 ; \sin \theta = \frac { 1 } { 2 } ; \cos \theta = \pm \frac { \sqrt { 3 } } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions