Solved

Use the Trigonometric Substitution to Rewrite the Algebraic Expression as a Trigonometric

Question 72

Multiple Choice

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ\theta , where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .Then find sin θ\theta and cos θ\theta .
33=819x2,x=3cosθ3 \sqrt { 3 } = \sqrt { 81 - 9 x ^ { 2 } } , x = 3 \cos \theta


A) sinθ=3;sinθ=33;cosθ=63\sin \theta = 3 ; \sin \theta = \frac { \sqrt { 3 } } { 3 } ; \cos \theta = \frac { \sqrt { 6 } } { 3 }
B) 3sinθ=3;sinθ=0;cosθ=13 \sin \theta = 3 ; \sin \theta = 0 ; \cos \theta = 1
C) sinθ=3;sinθ=33;cosθ=63\sin \theta = \sqrt { 3 } ; \sin \theta = \frac { \sqrt { 3 } } { 3 } ; \cos \theta = \frac { \sqrt { 6 } } { 3 }
D) 9sinθ=33;sinθ=33;cosθ=639 \sin \theta = 3 \sqrt { 3 } ; \sin \theta = \frac { \sqrt { 3 } } { 3 } ; \cos \theta = \frac { \sqrt { 6 } } { 3 }
E) 3cosθ=3;sinθ=1;cosθ=03 \cos \theta = 3 ; \sin \theta = 1 ; \cos \theta = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions