Solved

Find the Fourth Roots Of 12+32i- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } i

Question 227

Multiple Choice

Find the fourth roots of 12+32i- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } i Write the roots in trigonometric form.


A) w1=cos(20) +isin(20) w2=cos(110) +isin(110) w3=cos(200) +isin(200) w4=cos(290) +isin(290) \begin{array} { l } w _ { 1 } = \cos \left( 20 ^ { \circ } \right) + i \sin \left( 20 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 110 ^ { \circ } \right) + i \sin \left( 110 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 200 ^ { \circ } \right) + i \sin \left( 200 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 290 ^ { \circ } \right) + i \sin \left( 290 ^ { \circ } \right) \end{array}
B) w1=cos(30) +isin(30) w2=cos(120) +isin(120) w3=cos(210) +isin(210) w4=cos(300) +isin(300) \begin{array} { l } w _ { 1 } = \cos \left( 30 ^ { \circ } \right) + i \sin \left( 30 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 120 ^ { \circ } \right) + i \sin \left( 120 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 210 ^ { \circ } \right) + i \sin \left( 210 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 300 ^ { \circ } \right) + i \sin \left( 300 ^ { \circ } \right) \end{array}
C) w1=cos(35) +isin(35) w2=cos(125) +isin(125) w3=cos(215) +isin(215) w4=cos(305) +isin(305) \begin{array} { l } w _ { 1 } = \cos \left( 35 ^ { \circ } \right) + i \sin \left( 35 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 125 ^ { \circ } \right) + i \sin \left( 125 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 215 ^ { \circ } \right) + i \sin \left( 215 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 305 ^ { \circ } \right) + i \sin \left( 305 ^ { \circ } \right) \end{array}
D) w1=cos(25) +isin(25) w2=cos(115) +isin(115) w3=cos(205) +isin(205) w4=cos(295) +isin(295) \begin{array} { l } w _ { 1 } = \cos \left( 25 ^ { \circ } \right) + i \sin \left( 25 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 115 ^ { \circ } \right) + i \sin \left( 115 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 205 ^ { \circ } \right) + i \sin \left( 205 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 295 ^ { \circ } \right) + i \sin \left( 295 ^ { \circ } \right) \end{array}
E) w1=cos(40) +isin(40) w2=cos(130) +isin(130) w3=cos(220) +isin(220) w4=cos(310) +isin(310) \begin{array} { l } w _ { 1 } = \cos \left( 40 ^ { \circ } \right) + i \sin \left( 40 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 130 ^ { \circ } \right) + i \sin \left( 130 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 220 ^ { \circ } \right) + i \sin \left( 220 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 310 ^ { \circ } \right) + i \sin \left( 310 ^ { \circ } \right) \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions