Solved

In the Figure α\alpha And β\beta Are Positive Angles α\alpha = Arcsin(0 β\beta ) to Write C as a Function Of

Question 55

Multiple Choice

In the figure, α\alpha and β\beta are positive angles.  In the figure,  \alpha   and  \beta  are positive angles.       A = 3, b = 12 Use  \alpha   = arcsin(0.25sin \beta )  to write c as a function of  \beta .   A)   c = \frac { 12 \sin [ \pi - \beta - \arcsin ( 0.25 \beta )  ] } { \sin \beta }  B)   c = \frac { 12 \sin [ \pi + \beta - \arcsin ( 0.25 \beta )  ] } { \sin \beta }  C)   c = \frac { 0.25 \sin [ \pi - \beta - \arcsin ( 12 \beta )  ] } { \sin \beta }  D)   c = \frac { 12 \sin [ \pi + \beta + \arcsin ( 0.25 \beta )  ] } { \sin \beta }  E)   c = \frac { 12 \sin [ \pi - \beta + \arcsin ( 0.25 \beta )  ] } { \sin \beta }
A = 3, b = 12
Use α\alpha = arcsin(0.25sin β\beta ) to write c as a function of β\beta .


A) c=12sin[πβarcsin(0.25β) ]sinβc = \frac { 12 \sin [ \pi - \beta - \arcsin ( 0.25 \beta ) ] } { \sin \beta }
B) c=12sin[π+βarcsin(0.25β) ]sinβc = \frac { 12 \sin [ \pi + \beta - \arcsin ( 0.25 \beta ) ] } { \sin \beta }
C) c=0.25sin[πβarcsin(12β) ]sinβc = \frac { 0.25 \sin [ \pi - \beta - \arcsin ( 12 \beta ) ] } { \sin \beta }
D) c=12sin[π+β+arcsin(0.25β) ]sinβc = \frac { 12 \sin [ \pi + \beta + \arcsin ( 0.25 \beta ) ] } { \sin \beta }
E) c=12sin[πβ+arcsin(0.25β) ]sinβc = \frac { 12 \sin [ \pi - \beta + \arcsin ( 0.25 \beta ) ] } { \sin \beta }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions