Solved

The Linear Programming Problem Has an Unusual Characteristic \ge 0
Y \ge

Question 242

Multiple Choice

The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs.
Objective function:

Z = 2.5x + y

Constraints:

X \ge 0
Y \ge 0
3x + 5y \le 15
5x + 2y \le 10


A)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)  and where it occurs.   Objective function:   Z = 2.5x + y   Constraints:   X   \ge  0 Y  \ge  0 3x + 5y  \le  15  5x + 2y  \le  10   A)    Minimum at (0, 0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C)     Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D)     No minimum E)    Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (0, 0) : 0
B)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)  and where it occurs.   Objective function:   Z = 2.5x + y   Constraints:   X   \ge  0 Y  \ge  0 3x + 5y  \le  15  5x + 2y  \le  10   A)    Minimum at (0, 0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C)     Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D)     No minimum E)    Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (2019,4519) \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right) : 5.00
C)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)  and where it occurs.   Objective function:   Z = 2.5x + y   Constraints:   X   \ge  0 Y  \ge  0 3x + 5y  \le  15  5x + 2y  \le  10   A)    Minimum at (0, 0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C)     Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D)     No minimum E)    Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (2019,0) \left( \frac { 20 } { 19 } , 0 \right) : 2.63
D)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)  and where it occurs.   Objective function:   Z = 2.5x + y   Constraints:   X   \ge  0 Y  \ge  0 3x + 5y  \le  15  5x + 2y  \le  10   A)    Minimum at (0, 0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C)     Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D)     No minimum E)    Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 No minimum
E)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)  and where it occurs.   Objective function:   Z = 2.5x + y   Constraints:   X   \ge  0 Y  \ge  0 3x + 5y  \le  15  5x + 2y  \le  10   A)    Minimum at (0, 0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C)     Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D)     No minimum E)    Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (4519,2019) \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right) : 6.97

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions