Solved

For a Concert Event, There Are $30 Reserved Seat Tickets {x+y300030x+20y72,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 72,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.

Question 82

Multiple Choice

For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.


A) {x+y300030x+20y72,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 72,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.  For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.   A)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 72,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     B)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 68,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     C)    \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 66,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.    D)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 73,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.      E)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 65,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.
B) {x+y300030x+20y68,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 68,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.  For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.   A)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 72,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     B)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 68,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     C)    \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 66,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.    D)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 73,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.      E)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 65,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.
C) {x+y300030x+20y66,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 66,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.  For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.   A)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 72,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     B)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 68,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     C)    \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 66,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.    D)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 73,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.      E)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 65,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.
D) {x+y300030x+20y73,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 73,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.  For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.   A)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 72,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     B)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 68,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     C)    \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 66,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.    D)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 73,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.      E)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 65,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.
E) {x+y300030x+20y65,000x2000x0y0\left\{ \begin{array} { c } x + y \leq 3000 \\30 x + 20 y \geq 65,000 \\x \leq 2000 \\x \geq 0 \\y \geq 0\end{array} \right.  For a concert event, there are $30 reserved seat tickets and $20 general admission tickets.There are 2000 reserved seats available, and fire regulations limit the number of paid ticket holders to 3000.The promoter must take in at least $65,000 in ticket sales.Find and graph a system of inequalities describing the different numbers of tickets that can be sold.   A)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 72,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     B)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 68,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.     C)    \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 66,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.    D)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 73,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.      E)   \left\{ \begin{array} { c }  x + y \leq 3000 \\ 30 x + 20 y \geq 65,000 \\ x \leq 2000 \\ x \geq 0 \\ y \geq 0 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions