Solved

Select the Correct Graph of the Polar Equation r=8sinθcos2θr = 8 \sin \theta \cos ^ { 2 } \theta

Question 252

Multiple Choice

Select the correct graph of the polar equation.Describe your viewing window. r=8sinθcos2θr = 8 \sin \theta \cos ^ { 2 } \theta


A)  Select the correct graph of the polar equation.Describe your viewing window.   r = 8 \sin \theta \cos ^ { 2 } \theta   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
B)  Select the correct graph of the polar equation.Describe your viewing window.   r = 8 \sin \theta \cos ^ { 2 } \theta   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
C)  Select the correct graph of the polar equation.Describe your viewing window.   r = 8 \sin \theta \cos ^ { 2 } \theta   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
D)  Select the correct graph of the polar equation.Describe your viewing window.   r = 8 \sin \theta \cos ^ { 2 } \theta   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
E)  Select the correct graph of the polar equation.Describe your viewing window.   r = 8 \sin \theta \cos ^ { 2 } \theta   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions