Solved

Select the Correct Graph of the Polar Equation r=2cscθ+5r = 2 \csc \theta + 5

Question 546

Multiple Choice

Select the correct graph of the polar equation.Describe your viewing window. r=2cscθ+5r = 2 \csc \theta + 5


A)  Select the correct graph of the polar equation.Describe your viewing window.   r = 2 \csc \theta + 5   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array} θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
B)  Select the correct graph of the polar equation.Describe your viewing window.   r = 2 \csc \theta + 5   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array} θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
C)  Select the correct graph of the polar equation.Describe your viewing window.   r = 2 \csc \theta + 5   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array} θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
D)  Select the correct graph of the polar equation.Describe your viewing window.   r = 2 \csc \theta + 5   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array} θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
E)  Select the correct graph of the polar equation.Describe your viewing window.   r = 2 \csc \theta + 5   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array} θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions