Solved

Find U × V and Show That It Is Orthogonal u=8kv=i+4j+k\begin{array} { l } \mathbf { u } = 8 \mathbf { k } \\\mathbf { v } = - \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\end{array}

Question 4

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=8kv=i+4j+k\begin{array} { l } \mathbf { u } = 8 \mathbf { k } \\\mathbf { v } = - \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\end{array}


A) u×v=4i8j(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 4 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=32i8k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=32i8j(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=32j8k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { j } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=8i8j(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 8 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions