Solved

Find U × V and Show That It Is Orthogonal

Question 109

Multiple Choice

Find u × v and show that it is orthogonal to both u and v.
u=57iv=67j49k\begin{array} { l } \mathbf { u } = \frac { 5 } { 7 } \mathbf { i } \\\mathbf { v } = \frac { 6 } { 7 } \mathbf { j } - 49 \mathbf { k }\end{array}


A) u×v=35i+3049j(u×v) u=0(u×v) u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
B) u×v=35i3049k(u×v) u=0(u×v) u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathrm { i } - \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
C) u×v=35i+3049k(u×v) u=0(u×v) u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
D) u×v=35i+3049j(u×v) u=0(u×v) u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
E) u×v=35j+3049k(u×v) u=0(u×v) u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { j } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions